TRIBUTARY TO REEDY FORK CREEK STREAM RESTORATION

GUILFORD COUNTY, NORTH CAROLINA

CONTRACT # D06028-A

Prepared For:

Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

ANNUAL MONITORING REPORT (YEAR 4 OF 5)

FEBRUARY 2012

Owner

NCDENR Ecosystem Enhancement Program Department of Environment and Natural Resources 1652 Mail Service Center Raleigh, NC 27699-1652

EEP Project Manager: Guy Pearce Phone: (919) 715-1656

Design and Monitoring Firm

Mulkey Engineers and Consultants 6750 Tryon Road Cary, North Carolina 27518 Phone: (919) 851-1912 Fax: (919) 851-1918

Project Manager: Wendee B. Smith Phone: (919) 858-1833

Project Engineer: Emmett Perdue Phone: (919) 858-1874

Table of Contents

1.0	Executive Summary	1
2.0	Project Background	.3
2.1	Project Location and Setting	3
2.2	Project Goals and Objectives	3
2.3	Project Restoration Approach and Mitigation Type	4
2.4	Project History	4
2.5	Project Monitoring Plan View	5
3.0	Project Condition and Monitoring Results	6
3.1	Project Vegetation Monitoring	6
3.1.1	Vegetation Monitoring Methodology	6
3.1.2	Vegetation Monitoring Success Criteria	7
3.1.3	Vegetation Monitoring Results for Year 1 of 5	7
3.1.4	Vegetation Monitoring Results for Year 2 of 5	8
3.1.5	Vegetation Monitoring Results for Year 3 of 5	9
3.1.6	Vegetation Monitoring Results for Year 4 of 5	9
3.2	Project Stream Monitoring	10
3.2.1	Stream Monitoring Methodology	10
3.2.2	Stream Monitoring Success Criteria	13
3.2.3	Stream Monitoring Results for Year 1 of 5	15
3.2.4	Stream Monitoring Results for Year 2 of 5	17
3.2.5	Stream Monitoring Results for Year 3 of 5	19
3.2.6	Stream Monitoring Results for Year 4 of 5	22
4.0	Project Monitoring Methodology	. 25
5.0	References	. 26

Figures

Figure 1. Location Map

Tables

Table I.	Project Restoration Approach and Mitigation Type
Table II.	Project Activity and Reporting History
Table III.	Project Contacts
Table IV.	Project Background
Table V.	Stem Counts Monitoring Year 4 for Each Species Arranged by Plot
Table VI.	Vegetative Problem Areas
Table VII.	Baseline Morphology and Hydraulic Summary
Table VIII.	Morphology and Hydraulic Monitoring Summary
Table IX.	BEHI and Sediment Transport Estimates
Table X.	Verification of Bankfull Events
Table XI.	Categorical Stream Feature Visual Stability Assessment
Table XII.	Stream Problem Areas

Appendices

Appendix A.	Monitoring Plan View
Appendix B.	Vegetation Plot Photos
Appendix C.	Reference Point Photos
Appendix D.	Cross Section Photos
Appendix E.	Raw Data

1.0 Executive Summary

This annual monitoring report details the monitoring activities through the fourth year and the results for the Tributary to Reedy Fork Creek Stream Restoration Site (RFC). All of the monitoring activities were conducted and the subsequent results are reported in accordance with the approved mitigation plan (Mulkey Engineers and Consultants, 2008) for RFC. The content and format of this report were developed in accordance with the contract requirements for the Full Delivery RFP 16-D06028 (NCEEP, 2005). Accordingly, this report includes project background information, project monitoring results, and description of the project monitoring methodology.

Mulkey Engineers & Consultants (Mulkey) submitted RFC for the Full Delivery RFP 16-D06028 to provide 7,000 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract by the Ecosystem Enhancement Program Department of Environment and Natural Resources (NCEEP) and began work on the project on November 26, 2007. The primary goals of RFC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat. These goals were met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for approximately 7,511 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
- By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

RFC located in Guilford County, North Carolina near the Town of Gibsonville and is situated in the Cape Fear River Basin. Past land use practices, including extensive cattle farming and clearing of the riparian buffers resulted in substantial degradation of the stream systems at RFC. RFC is comprised of seven stream reaches totaling approximately 7,511 feet of restored stream channel. All of the analyses, design, and restoration at RFC were accomplished using natural stream channel design methods. In addition to stream channel restoration, the restored stream banks and the riparian and upland buffer areas along RFC were also replanted with native species vegetation.

The survivability of the planted vegetation at RFC will be monitored at representative vegetation plots as well as project-wide. Stem counts, photo documentation and comparison, and visual assessment will be utilized. Bare root stock were planted at a density of 680 stems per acre (eight foot by eight foot spacing) and live stakes were planted on the stream banks at a density of 1,742 stems per acre (five foot by five foot spacing). A

Annual Monitoring Report (Year 4 of 5)

total of 16 representative vegetation plots were installed at RFC based on the recommendations set forth by NCEEP regarding the acreage contained in the conservation easement. The survivability of the planted woody vegetation at RFC will be monitored using annual stem counts at each of the plots. In addition to the stem counts, annual photos will be taken at each of the plots and also from eight other permanent photo reference points. The vegetation plot photos will be used for photo documentation and comparison of the vegetation growth at each plot. The photo documentation at the reference points will be employed to assist in a project-wide visual assessment of the vegetation at RFC. Survivability will be based on achieving a minimum of 320 stems per acre, the rate required to be present during the third year of monitoring, across the project site. The stem counts will be conducted during the latter part of the growing season months (August, September, and October) to ensure survival throughout a complete growing season while still allowing for relative ease in identification.

After Monitoring Year 1 where supplemental planting took place, the results of the vegetation monitoring have shown increased improvement as time passes. This trend has continued in Year 4 with 241 counted stems returning a range of 377 stems per acre to 850 stems per acre with an average of 608 stems per acre compared to Year 3 with 241 counted stems returning a range of 377 stems per acre to 769 stems per acre with an average of 596 stems per acre. Similarly, the visual appearance of trees across the site has increased as the bare roots have been able to out compete the herbaceous layer therefore becoming more visible. Given this trend, Mulkey did not make any additional recommendations or take any other action other than to proceed with the annual vegetation monitoring.

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology will be monitored to evaluate the success of stream restoration at RFC. The limits of the project stream reaches to be monitored at RFC were determined using the sampling rates outlined by the USACE et al. (2003). The monitoring involves using annual field surveys, pebble counts, crest gage recordation, visual assessment and photo Baseline conditions for comparison of the stream parameters to be documentation. monitored were established from data gathered immediately after construction through the as-built survey process. Longitudinal profiles and Modified Wolman pebble counts were conducted for all reaches and a total of seven permanent cross sections were surveyed and photo documented across RFC. A total of three crest gages across RFC were installed for hydrologic monitoring to verify the occurrence of bankfull storm events. Annual photo documentation was used for stream monitoring to complement and validate the other stream monitoring practices from eight permanent reference photo points. Annual project wide visual assessment was conducted using field observation and pedestrian surveys to identify any specific problem areas. This being the fourth year of monitoring, the BEHI information was not collected as required during Monitoring Year 3 and Monitoring Year 5. Stream restoration success at RFC was evaluated by comparison of the annual monitoring results against those same parameters as predicted, specified, and required in the proposed design and as implemented during the construction process represented by the as-built or baseline conditions. Success was deemed achieved when all such comparisons reveal positive trends toward overall stream stability.

Monitoring results from the three previous years have all indicated stability in terms of geomorphic processes. Year 4 monitoring has yielded the same results with the longitudinal profiles, cross sections, horizontal geometry and pebble counts all returning data that indicates stable C type stream channels with typical yearly fluctuations. The compilation of four years of monitoring data strongly suggest the RFC project has been successfully restored to a stable stream system in all stream related monitoring aspects.

Therefore, based on the strong positive results of both the vegetative and the stream monitoring for all monitoring to date at RFC, Mulkey does not propose any actions other than to proceed with the annual stream monitoring.

2.0 Project Background

2.1 **Project Location and Setting**

RFC located in Guilford County, North Carolina approximately five miles north of the Town of Gibsonville, approximately one half mile east of the intersection of NC Highway 61 and Sockwell Road (SR 2735) and immediately south of SR 2735 (Figure 1). RFC is situated in the Cape Fear River Basin 8-digit cataloging unit 03030002 and the 14-digit cataloging unit 03030002020070. Mulkey proposed to provide 7,000 Stream Mitigation Units (SMUs) with RFC under the Full Delivery RFP 16-D06028 issued by NCEEP. Mulkey acquired and installed permanent fencing along an easement covering 19.64 acres, which encompasses the streams and associated buffers at RFC.

2.2 **Project Goals and Objectives**

The primary goals of RFC were to improve water quality, to reduce bank erosion, to reestablish a floodplain along each of the stream reaches, and to improve the aquatic and terrestrial wildlife habitat.

These goals will be met through the following objectives:

- By using natural channel design to restore stable pattern, dimension, and profile for approximately 7,511 linear feet of stream channel
- By establishing a conservation easement, which will protect the streams from cattle intrusion and future development activities
- By establishing a floodplain or reconnecting the stream back to its historic floodplain, or a combination of both, for each project stream reach
- By creating or restoring floodplain features such as vernal pools, off channel ponds, or riparian wetlands
- By increasing the amount of aquatic habitat through the addition of rock and wood structures
- By reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors.

2.3 **Project Restoration Approach and Mitigation Type**

RFC is comprised of three main reaches (R2-1, R2-2, R2-3) and four tributaries (R1, R2-4a, R2-4b, and R2-4c). Prior to construction, these seven reaches were identified and proposed for restoration due to their distinct stream characteristics and drainage areas. These seven existing reaches totaled approximately 7,093 linear feet. A total of approximately 7,511 linear feet of stream channel was restored at RFC within the 19.64-acre conservation easement.

Analyses, design, and restoration of the stream channels at RFC was accomplished using Natural Stream Channel design methods developed by Rosgen (Rosgen, D. L., 1994, 1996, 1998). The proposed Rosgen channel type for each the stream reaches was a C4 channel. A combination of Priority Level I and II methods were used to construct these reaches.

The most significant stream restoration component at RFC involved reconstruction of each of the stream reaches such that stream flows greater than bankfull are allowed to access the restored stream's floodplain. Two different approaches were used to ensure such floodplain access. The first approach involved relocating and raising the stream bed such that the historic floodplain is accessed by stream flows greater than bankfull (the sections of the project stream reaches that were restored using Priority Level I methodologies). A second approach was used where site constraints prevented such relocation and raising of the stream bed. The second approach involved building a floodplain at a level lower than the historic floodplain through the construction of bankfull benches (the sections of the project stream reaches that were restored using Priority Level II methodologies). In-stream structures were installed along each of the stream reached to provide grade control and stream bank protection, and to increase in-stream habitat diversity. The in-stream structures that were installed included rock cross vanes, j-hook rock vanes, rock vanes, constructed riffles, and root wads. Stream banks were further stabilized through the installation of coir fiber erosion control matting, temporary and permanent seeding, and the installation of native species vegetation in the form of transplants, live stakes, and bare root seedlings. All areas of the site that were disturbed during construction activities were stabilized using temporary and permanent seeding. The riparian and upland buffer communities along RFC were also restored with native species vegetation using a target community which will emulate the Piedmont/Low Mountain Alluvial Forest described by Shafale and Weakley (1990). The conservation easement was fenced to permanently protect the restored stream and buffer areas. Information regarding the restoration approach and mitigation type for each of the seven project stream reaches is detailed in Table 1.

2.4 **Project History**

The existing conditions at RFC prior to restoration were a result of cattle use for the past 50 years. When Mulkey initially became involved with this project, there were approximately 150 dairy cattle utilizing the pastures and directly accessing the stream channels. This continual livestock access to the streams resulted in substantial erosion along the stream banks, incision of the channels, channel widening in some areas, and heavy siltation throughout RFC, as well as reduced water quality due to large quantities of fecal matter into

Annual Monitoring Report (Year 4 of 5)

the stream system. As a result of these land and water quality issues, Mulkey submitted RFC for the Full Delivery RFP 16-D06028 to provide 7,000 Stream Mitigation Units (SMUs). Mulkey was awarded the stream restoration contract by the NCEEP and began work on the project on November 26, 2007. The project activity and reporting history are detailed in Table II. Table III lists the contacts for the designer, contractor, relevant suppliers, and monitoring firm for RFC. Table IV provides a complete listing of project background information.

2.5 **Project Monitoring Plan View**

Mulkey conducted as-built surveys along the entire length of each of the restored project stream reaches using total station survey equipment. These surveys were conducted in part to establish and document baseline conditions for the newly restored stream channels for future monitoring activities. Plan and profile drawings were developed using the results of the monitoring baseline surveys and subsequent yearly monitoring surveys. These drawing depicted the post construction condition of RFC with overlays of the yearly monitoring surveys which are included in Appendix A. The drawings consisted of plan sheets that include the following:

- Title sheet
- Legend sheet
- As-built planimetric drawings and profiles developed from the baseline monitoring field surveys

The drawings illustrate the location of all major project elements, including, but not limited to the:

- Restored stream channel thalweg, normal edges of water, constructed bankfull channel limits, and the constructed cut slope limits
- Conservation easement boundaries
- Permanent fencing limits
- Topography
- In-stream structures
- Photo points
- Crest gages
- Vegetation plots locations
- Permanent cross sections
- Project survey control
- Monitoring profile survey limits
- Relevant structures and utilities

3.0 Project Condition and Monitoring Results

3.1 **Project Vegetation Monitoring**

3.1.1 Vegetation Monitoring Methodology

The survivability of the planted vegetation at RFC, including both woody and herbaceous species, was monitored at representative vegetation plots as well as project-wide. Monitoring at representative vegetation plots focused primarily on planted woody vegetation and was conducted using stem counts and photo documentation. Project-wide monitoring of planted vegetation included both woody and herbaceous species and was accomplished using visual assessment as well as photo documentation.

Major grading and channel construction was completed in mid-April 2008. Throughout construction, appropriate temporary and permanent seeding was conducted to stabilize areas disturbed during construction. Appropriate existing native species vegetation was also salvaged, where feasible, in the form of transplants and live stakes, throughout the construction process. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of March and April 2008, with all such planting being completed by mid-April 2008. These remaining plant materials consisted of native species bare root seedlings and live stakes and were installed, as appropriate, to restore the riparian and upland buffer communities along RFC within the conservation easement area. A complete listing of the planting zones, their corresponding acreages, and the corresponding vegetation species was included in the approved mitigation report (Mulkey Engineers and Consultants, 2008). The bare root stock were planted at a density of 680 stems per acre (eight foot by eight foot spacing) and the live stakes were planted on the stream banks at a density of 1,742 stems per acre (five foot by five foot spacing).

As-built surveys were initiated immediately following the installation of plant materials. In the period between March and May 2008, during the as-built surveys and after the completion of planting, a total of 16 representative vegetation plots (vegetation plots 1 through 16) were installed randomly across RFC. An iron pipe was installed at each plot corner for monumentation and a polyvinyl chloride (PVC) pipe, along with a label specifying the plot number, was also installed at one of the corners of each plot. The plot corners were strategically located such that each plot has a total area of approximately 100 square meters. Between April and May 2008, after the establishment of the plots, the species of each planted stem in each plot was identified. Each of these stems was then tallied, by species, and marked with loosely tied survey flagging (on lateral branches) to facilitate future identification. The survivability of the planted woody vegetation at RFC was monitored using annual stem counts at each of the plots. During the annual stem counts, the planted stems were re-flagged as required to ensure that all planted stems were accounted for and considered in the survivability calculations. In addition to the stem counts, photos were taken at each of the plots. Where necessary, the corner of each plot was remarked with the PVC pipe and the plot number relabeled. This PVC plot corner was used as the reference point from which the annual vegetation plot photos were taken such that the

photos at each plot will have the same orientation. The photos were compared to the photos from the previous years to validate and document vegetation success. In addition to the photo reference points established at each of the vegetation plots, a total of eight additional permanent photo reference points were installed across RFC. These photo reference points were monumented using steel rebar and PVC pipe and were used for additional photo documentation of vegetation growth across RFC. Photos were taken from each of the eight permanent photo reference points with the same orientation each year and used for photo documentation and annual comparison of the vegetation growth across RFC. This exercise helped to further validate and document vegetation success at RFC. Between April and May 2008, after installation of the described eight photo reference points, photos were taken from each of the photo reference points to document the baseline conditions at RFC with regards to planted vegetation. Project-wide visual assessment was also used for vegetation monitoring at RFC. A visual assessment was conducted using annual field observation and pedestrian surveys to identify any specific vegetation problem areas at RFC during the monitoring period. Any problem areas where vegetation was lacking or exotic vegetation occurred, was identified and categorized as bare bank, bare bench, bare floodplain, or invasive population. Such areas were documented using representative photos and their locations mapped on the plan view in Appendix A.

3.1.2 Vegetation Monitoring Success Criteria

Vegetation success at RFC will be measured by stem survivability. Survivability was based on achieving at least 320 stems per acre, the rate required to be present during Year 3 Monitoring. The stem counts were conducted during the latter part of the growing season months (August, September, and October) to ensure survival throughout a complete growing season while still allowing for relative ease in identification. As described above, photo documentation and visual assessment was used to complement the stem counts as part of the vegetation monitoring protocol at RFC. If during any given year, the planted species are not anticipated to meet final criteria established for vegetation, supplemental plantings are to be considered. In the event that this occurs, a remedial planting plan will be developed that achieves the survivability goals established for Years 3 and 5.

3.1.3 Vegetative Monitoring Results for Year 1 of 5

In late September 2008, the vegetation monitoring for Monitoring Year 1 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at RFC for Monitoring Year 1. Stem counts were conducted at each of the 16 vegetation plots. Table V presents the results of these stem counts for each of the plots. Photos were taken from the photo reference points at each of the 16 vegetation plots with the initial baseline photos taken from the photo reference points at each of the 16 vegetation plots. Photos were also taken from each of the eight permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the initial baseline photos taken from the original eight permanent photo reference points. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment.

The results of the Monitoring Year 1 stem counts showed that the counts for the 16 vegetation plots ranged from 121 to 972 stems per acre, with an average survivability of 478 stems per acre. These results indicated that the survivability of the planted woody vegetation at RFC may not meet the success criteria of achieving at least 320 stems per acre after three years and 260 stems per acre after five years at RFC. Based on the results of the stem counts, supplemental plantings of bare root seedlings were recommended to be conducted by Mulkey during the 2008 – 2009 planting season to ameliorate any deficiencies. The comparisons of the baseline and Monitoring Year 1 photos at both the 16 vegetation plot photo reference points and the eight permanent photo reference points did not reveal any concerns, problems, or negative trends. No vegetation problem areas were observed or documented during the project-wide visual assessment. No significant volunteer woody species were observed at any of the 16 vegetation plots. Beyond the supplemental plantings, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.4 Vegetative Monitoring Results for Year 2 of 5

Mulkey conducted the recommended supplemental plantings of bare root seedlings in late winter 2008. These supplemental plantings were conducted only at the areas of the site where the most mortality was observed. Between early and mid-September 2009, the vegetation monitoring for Monitoring Year 2 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at RFC for Monitoring Year 2. Stem counts were conducted at each of the 16 vegetation plots. Table V presents the results of these stem counts for each of the plots. Photos were taken from the photo reference points at each of the 16 vegetation plots. Appendix B compares these photos with the initial baseline photos taken from the photo reference points at each of the 16 vegetation plots. Photos were also taken from each of the eight permanent photo reference points. Appendix C compares these photos with the initial baseline photos taken from the original eight permanent photo reference points. A projectwide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment.

Subsequent to the described replanting, the results of the Monitoring Year 2 stem counts showed that the counts for the 16 vegetation plots ranged from 504 to 972 stems per acre, with an average survivability of 697 stems per acre. These results indicated that the survivability of the planted woody vegetation at RFC should meet the success criteria of achieving at least 320 stems per acre after three years and 260 stems per acre after five years at RFC. The comparisons of the baseline, Monitoring Year 1, and Monitoring Year 2 photos at both the 16 vegetation plot photo reference points and the eight permanent photo reference points did not reveal any concerns, problems, or negative trends. No vegetation problem areas were observed or documented during the project-wide visual assessment. No significant volunteer woody species were observed at any of the 16 vegetation plots. Native species herbaceous vegetation. Both the woody and herbaceous vegetation are establishing well along the stream banks, with root mats for both clearly visible along the

edges of water for the project stream reaches. Based on the positive results from the vegetative monitoring for Monitoring Year 2 at RFC, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.5 Vegetative Monitoring Results for Year 3 of 5

Between late September and early October 2010, the vegetation monitoring for Monitoring Year 3 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at RFC for Monitoring Year 3. Stem counts were conducted at each of the 16 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes initial stem counts through Monitoring Year 3 stem counts and the resulting survivability percentages. Photos were taken from the photo reference points at each of the 16 vegetation plots. Appendix B compares the photos from the initial baseline photos through the Monitoring Year 3 taken from the photo reference points at each of the 16 vegetation plots. Photos were also taken from each of the eight permanent photo reference points. Appendix C compares the photos from the initial baseline photos through the Monitoring Year 3 taken from the initial baseline photos through the Monitoring Year 3 taken from the initial baseline photos through the Monitoring Year 3 taken from the initial baseline photos through the Monitoring Year 3 taken from the initial baseline photos through the Monitoring Year 3 taken from the original eight permanent photo reference points. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment.

Monitoring Year 3 stem counts were documented and the survivability calculated from the Monitoring Year 2 totals following replanting. Monitoring Year 3 showed that the counts for the 16 vegetation plots ranged from 377 to 769 stems per acre, with an average survivability of 596 stems per acre. These results indicate that the survivability of the planted woody vegetation at RFC have met the success criteria of achieving at least 320 stems per acre after three years and will likely meet the 260 stems per acre after five years at RFC. The photo comparison of the baseline data through Monitoring Year 3 at the 16 vegetation plots, photo reference points, and the eight permanent photo reference points depict an established herbaceous vegetative layer dominating the landscape. Mulkey believes that by comparing the Year 2 and Year 3 photos, the herbaceous vegetation has reached its growth limit. This should allow the planted woody trees to become well established above the herbaceous vegetation and to continue their increased growth pattern. Mulkey is aware, through pedestrian surveys and visual observations, that at first glance some areas appear to be lacking woody species; however upon a strict search, the planted trees are in fact present. At this time, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.1.6 Vegetative Monitoring Results for Year 4 of 5

In late September 2011, the vegetation monitoring for Monitoring Year 4 was conducted. The methodologies described in the Vegetation Monitoring Methodology Section above were used for the vegetation monitoring at RFC for Monitoring Year 4. Stem counts were conducted at each of the 16 vegetation plots. Table V presents the results of these stem counts for each of the plots. This table includes initial stem counts through Monitoring Year

4 stem counts and the resulting survivability percentages. Photos were taken from the photo reference points at each of the 16 vegetation plots. Appendix B compares the photos from the initial baseline photos through the Monitoring Year 4 taken from the photo reference points at each of the 16 vegetation plots. Photos were also taken at each of the eight permanent photo reference points. Appendix C compares the photos from the initial baseline photos through the Monitoring Year 4 taken from the original eight permanent photo reference points. Appendix C compares the photos from the initial baseline photos through the Monitoring Year 4 taken from the original eight permanent photo reference points. A project-wide visual assessment was also conducted to identify any specific vegetation problem areas. Table VI summarizes the results of the project-wide vegetation visual assessment.

Monitoring Year 4 stem counts were documented and the survivability calculated from the Monitoring Year 2 totals following replanting. Monitoring Year 4 showed that the counts for the 16 vegetation plots ranged from 377 to 850 stems per acre, with an average survivability of 608 stems per acre. The current results indicate that the survivability of the planted woody vegetation at RFC has been maintained from Year 3. Slight improvements in survivability were made in Year 4 when previously flagged trees were located that had not previously been found in Year 3. Due to a heavy herbaceous cover during Years 2 and 3, many trees were not easily located or had appeared to have died. The current stem counts are on course to achieve the success criteria of 260 stems per acre after five years. The photo comparison of the baseline data through Monitoring Year 4 at the 16 vegetation plots, photo reference points, and the eight permanent photo reference points shows the planted trees are rising above the robust herbaceous layer and becoming the dominant vegetative layer. Comparisons between Year 3 and Year 4 photos showed that the planted trees have become well established and continued their increased growth pattern. Significant tree growth was visually apparent during the monitoring period due to difficulties in conducting longitudinal and cross sectional stream surveys. Mulkey is aware, through pedestrian surveys and visual observations, that at first glance some areas appear to be lacking woody species; however upon a strict search, the planted trees are in fact present. At this time, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual vegetation monitoring.

3.2 Project Stream Monitoring

3.2.1 Stream Monitoring Methodology

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology will be monitored to evaluate the success of the stream restoration activities at RFC. The monitoring of stream dimension, pattern, and profile, or morphometric monitoring, along with the monitoring of stream bed material, was conducted using annual field surveys along with visual assessment. The morphometric, stream bed material, and stream bank stability monitoring was conducted along representative sections of the project stream reaches. Hydrologic monitoring consisted of field measurements of bankfull events using crest gages. Project-wide stream monitoring was accomplished using visual assessment as well as photo documentation.

Annual Monitoring Report (Year 4 of 5)

Major grading and channel construction were completed in mid-April 2008. Immediately following the completion of the major grading and channel construction activities, all remaining plant material was installed during the months of March and April 2008. The asbuilt surveys of all of the stream reaches at RFC were initiated immediately following the installation of plant materials and were conducted utilizing total station surveys while following the protocols set forth by the 2003 USACE Stream Mitigation guidelines (USACE et al., 2003). In addition to documenting the construction of RFC for comparison to the proposed design, the results of the as-built surveys were also used to establish baseline morphology for the proposed monitoring. This information is presented in Table VII. A summary of the restored stream channel lengths are outlined in Table I. A complete set of As-Built Drawings including a monitoring plan view and longitudinal profile for the as-built conditions of the restored channels can be found in Appendix A. After the completion of the as-built surveys, the limits and corresponding lengths of the project stream reaches to be monitored at RFC were determined using the sampling rates outlined by the USACE et al. (2003). A total of 3,060 linear feet of all restored stream channels are surveyed annually during the monitoring period. This amount satisfies the 3,000 linear feet required minimum. Based on these the sampling rates, the limits of the project stream reaches to be surveyed annually for monitoring are as follows:

Reach R1 – 600 Linear Feet Total (Stations 0+00-R1- through 6+00-R1-) Reach R2-2 – 453 Linear Feet Total (Stations 18+43-R2- through 22+96-R2-) Reach R2-3 – 1,633 Linear Feet Total (Stations 2+10-R2- through 18+43-R2-) Reach R2-4a – 174 Linear Feet Total (Stations 0+36-R2- through 2+10-R2-) Reach R2-4b – 100 Linear Feet Total (Stations 0+31-R2-4b- through 1+31-R2-4b-) Reach R2-4c – 100 Linear Feet Total (Stations 0+00-R2-4c- through 1+00-R2-4c-)

The upstream and downstream limits of these reaches were monumented in the field using steel rebar/PVC pin. Each pin was also labeled with an aluminum tag identifying the respective reach and the correct descriptor ("begin" or "end").

A total of seven permanent cross sections, consisting of both riffles and pools, were established across RFC and surveyed during the as-built surveys. The number of cross sections was determined using the sampling rates outlined by the USACE et al. (2003). The left and right ends of each cross section were monumented with a steel rebar pin and PVC pipe. An aluminum tag identifying the cross section number was also installed at the pin on the left side of the channel. In addition to the cross section surveys, photos were taken at each of the seven cross sections, looking across the stream from left to right, to document the baseline conditions at each respective cross section. Specific stations along each permanent cross section were established during the as-built surveys to promote replication and consistency during the subsequent annual cross section surveys. The stationing for each cross section was established to always begin on the left side of the channel, facing downstream, at the left rebar/PVC pin, and to continue across the stream channel to the rebar/PVC pin on the right side. The as-built surveys of the seven cross sections established the baseline conditions with regards to stream dimension. All of the seven cross sections are surveyed each year during the five-year monitoring period and the resulting parameters are compared annually. The parameters to be monitored include bankfull width, floodprone

width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. Photos were taken annually at each of the seven cross sections, with the same orientation, looking across the stream from left to right and were compared annually to the photos from the previous year(s) to document stream condition at each respective cross section.

The pattern for all of the stream reaches was surveyed and baseline conditions were established as part of the as-built surveys. Monitoring surveys for stream pattern will be limited to the project stream reaches specified above for annual monitoring surveys. The stream pattern parameters resulting from the annual monitoring surveys will include sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio. These parameters are compared annually.

The as-built surveys included longitudinal profile survey along the entire length of all restored stream reaches. Longitudinal profiles were surveyed by identifying each stream feature (riffle, run, pool, or glide) and surveying specific points at each feature. These specific locations included top of bank, bankfull, water's edge or surface, and thalweg. The as-built surveys were used to establish the baseline conditions with regards to longitudinal profile. The longitudinal profiles surveys conducted each year are limited to the project stream reaches specified above for annual monitoring surveys. The parameters resulting from the yearly surveys of the longitudinal profile are compared on an annual basis. The parameters to be monitored include bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing.

During the as-built surveys, Modified Wolman pebble counts were conducted at each of the project stream reaches to classify the stream bed materials. The pebble counts for the larger project stream reaches (R2-2 and R2-3) were conducted at each of the permanent cross sections by performing an equal number of counts at each cross section and then combining the results into a reach-wide count. These larger reaches were sampled at a minimum rate of 25 counts per cross section such that a minimum of 100 counts were made for each of the larger reaches. Reach-wide pebble counts were conducted along the smaller project stream reaches (R1, R2-4a, R2-4b, and R2-4c). A minimum of 100 counts were made for each of these smaller reaches. The stream bed materials are monitored at RFC by repeating these same pebble count procedures on an annual basis. The results of the pebble counts for each specified project stream reach are compared on an annual basis.

BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information served as baseline data for stream bank stability at RFC. Stream bank stability monitoring using these parameters was required in Monitoring Year 3 and will be again in Year 5. Data collected during these years were compared with pre-construction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both the stream bank erosion rates and sediment transport rates at RFC are expected as a result of restoration and will be documented as described to demonstrate success.

Annual Monitoring Report (Year 4 of 5)

During the as-built surveys, a total of three crest gages were installed across RFC, with two along Reach R2 and one at Reach R1. At the base of each crest gage a permanent vertical datum was installed. The locations of each crest gage along with the elevation of the permanent vertical datum were surveyed during the as-built surveys. The crest gages were used for the hydrologic monitoring at RFC to verify the occurrence of bankfull storm events. Each crest gages were checked annually and the flood stage(s) recorded by each gage and measured relative to the permanent vertical datum of the respective gage. The results of these measurements were used to document the occurrence of significant storm events, with the goal of specifically documenting the occurrence of bankfull and larger stream flow events.

Photo documentation and project-wide visual assessment were used for stream monitoring at RFC to complement the other stream monitoring practices. A total of eight permanent reference photo points were installed across RFC during the as-built surveys. These photo points were monumented using steel rebar/PVC pins. Photos were taken at that time to provide photo documentation of baseline stream conditions. Photos were taken from each of the eight permanent photo reference points with the same orientation each year and were used for photo documentation and annual comparison of the stream conditions across RFC. This exercise helped to further validate and document stream restoration success at RFC. The visual assessment was conducted using annual field observation and pedestrian surveys to identify any specific problem areas along the streams at RFC during the monitoring period. Any such problem areas were identified and organized under appropriate categories. Such areas were documented using representative photos, where applicable, and their locations mapped on the plan and profile sheets located in Appendix A. The suspected cause and appropriate remedial action for each problem was determined. If during any given year, the streams are not anticipated to meet the final established monitoring criteria, corrective actions are to be considered. Such modifications are to be documented and discussed with NCEEP.

3.2.2 Stream Monitoring Success Criteria

Stream dimension, pattern, profile, stream bed material, bank stability, and bankfull hydrology was monitored annually for the project stream reaches as described in detail above. Stream restoration success at RFC was evaluated by comparison of those annual results against those same parameters as predicted, specified, and required in proposed design. Success was achieved when all such comparisons reveal positive trends toward overall stream stability. The stream monitoring results should show that the stream channels at RFC are of the proposed stream channel type (Rosgen 1994).

Stream dimension parameters including bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius were measured and/or calculated for each of the permanent cross sections. The described dimension parameters are expected to remain consistent from year to year and should fall within the ranges established by the original proposed design parameters. It is expected and acceptable that minor adjustments in

dimension will occur such as the development of point bars and the subsequent deepening of pools. As vegetation becomes established and the stream banks are stabilized, the anticipation is that the width depth ratios will decrease and the entrenchment ratios will increase slightly, both within the normal ranges for C and E stream channel types (Rosgen, 1994).

Stream pattern parameters including sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio were measured and/or calculated. Stream pattern measurements are expected to remain consistent from year to year and to fall within the originally proposed design parameters. As vegetation becomes established and the stream banks are stabilized, it is anticipated that the sinuosity of the streams will also adjust, likely becoming more sinuous with time.

Stream longitudinal profile parameters including bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing were measured. Longitudinal profiles parameters are expected to remain relatively consistent from year to year. The stream profiles should not show aggrading or degrading conditions during the five-year monitoring period, however, minor profile adjustments such as deepening of pools is expected.

Stream bed material was monitored using the described Modified Wolman pebble counts. The success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely occur during the early years following construction and several years may be needed to observe a consistent bed material. Bed materials should ultimately reflect the proposed design conditions for each reach at RFC.

Stream bank stability was monitored using BEHI and sediment transport estimates during Monitoring Years 3 and again in Year 5. Data collected during these years will be compared with pre-construction conditions to determine the change in bank erosion hazard indices and sediment export rates for each reach assessed. Positive change, namely reduction, in both stream bank erosion rates and sediment transport rates at RFC are expected as a result of restoration and will be documented as described to demonstrate success.

Hydrologic monitoring success was based on the ability to document the occurrence of bankfull storm events at RFC. A minimum of two bankfull events, each occurring in two separate monitoring years, are required to be documented within the five-year monitoring period. The described crest gauges were used to determine and document the occurrence of these bankfull events.

As described above, photo documentation and visual assessment were used to complement the other stream monitoring practices as part of the stream monitoring protocol at RFC. If during any given year, the streams are not anticipated to meet the final established monitoring criteria, corrective actions will be considered. Such modifications will be documented and discussed with NCEEP.

3.2.3 Stream Monitoring Results for Year 1 of 5

In late September 2008, the stream monitoring for Monitoring Year 1 was conducted. The methodologies described in the Stream Monitoring Methodology Section above were used for the stream monitoring at RFC for Monitoring Year 1. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring as described in detail above. The results of these surveys were used as the basis for the morphometric monitoring, including stream dimension, pattern and profile.

All of the seven cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 stream dimension morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments including decreasing width to depth ratios, increasing entrenchment ratios, and minor increases in depth. Each of these trends was indicative of movement toward increased stream stability and was attributed to vegetation establishment and natural channel adjustments. The comparison of the Year 1 Monitoring cross section photos to the as-built cross section photos strongly complemented these suggestions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 stream pattern morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment toward increased stream stability. These minor adjustments can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool to pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. The comparison of the baseline and Monitoring Year 1 longitudinal profiles for each of the monitored project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments, including deepening of pools. The comparison of the baseline and Monitoring Year 1 longitudinal profiles or degrading.

Annual Monitoring Report (Year 4 of 5)

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII. Fluctuations in bed materials were expected to occur during the early years following construction. This expectation was observed in comparing the results of the baseline and Monitoring Year 1 pebble counts. Specifically, the bed material d50 and d84 for each of the stream reaches decreased. Mulkey believes that this fluctuation is attributed to the deposition of finer bed materials (sands and silts) mobilized during construction that have been subsequently deposited during storm events. At this time, Mulkey still believes that the stream bed materials will coarsen as stream bank stability increases with additional vegetation establishment and as the finer bed materials are concurrently flushed through the stream systems at RFC. The monitoring results suggested that on-site sediment supply from RFC is being greatly reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as this monitoring practice is scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as baseline data for stream bank stability at RFC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Each of the three crest gages were checked during the Monitoring Year 1 surveys to monitor hydrology at RFC. Wrack lines were observed well above the bankfull stage across RFC during the Monitoring Year 1 surveys, suggesting that a flood event in excess of the bankfull event. One of the crest gages along Reach R2 was apparently washed away during this flood event. The two remaining crest gages (one each at Reach R1 and Reach R2) recorded flood stages in excess of the bankfull stage. Both of the remaining crest gages were reset after checking stage measurements to record future events. Table X lists the information related to the verification of bankfull events at RFC for Monitoring Year 1 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at RFC during Monitoring Year 1. This was further validated through conversations with the land owner, Mr. George Teague, as he noted he had not seen a flood event of that magnitude in decades. This documentation of the first bankfull event at RFC during the monitoring period suggests success with regards to hydrologic monitoring at RFC.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 1 stream monitoring practices. Photos were taken from each of the eight permanent photo reference points. Appendix C includes all of the described photos and provides comparison of the photos with the initial baseline photos taken from the eight permanent photo reference points. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. The project-wide

Annual Monitoring Report (Year 4 of 5)

visual assessment did not reveal any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. Table XII presents the findings of no stream problem areas. Based on the results of the stream monitoring for Monitoring Year 1 at RFC, Mulkey did not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

3.2.4 Stream Monitoring Results for Year 2 of 5

Between early and mid-September 2009, the stream monitoring for Monitoring Year 2 was conducted. The methodologies described in the Stream Monitoring Methodology Section above were used for the stream monitoring at RFC for Monitoring Year 2. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring as described in detail above. The results of these surveys were used as the basis for the morphometric monitoring, including stream dimension, pattern and profile.

All of the seven cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. The comparison of the baseline condition along with the Monitoring Years 1 and 2 stream dimension morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments to the width to depth ratios, entrenchment ratios, and depth. Each of these trends was indicative of movement toward increased stream stability and was attributed to vegetation establishment and natural channel adjustments. The comparison of the baseline condition, Monitoring Year 1, and Monitoring Year 2 cross section photos strongly complemented these conclusions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radius of curvature, meander wavelength, and meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline condition, Monitoring Year 1, and Monitoring Year 2 stream pattern morphometric data for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. This adjustment toward increased stream stability. These minor adjustments can be viewed through the overlays included in Appendix A.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool-to-pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. The comparison of the baseline condition, Monitoring Year 1, and Monitoring Year 2

Annual Monitoring Report (Year 4 of 5)

longitudinal profiles for each of the monitored project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustment attributed to vegetation establishment and natural channel adjustments. The comparison of the baseline condition, Monitoring Year 1, and Monitoring Year 2 longitudinal profiles did not show excessive aggrading or degrading.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII. The comparison of the results of the pebble counts for Monitoring Year 1 and Monitoring Year 2 showed varied fluctuation of the bed material d50 and d84 along the sampled project stream reaches. Most of these fluctuations were slight. The bed material d50 fined or decreased slightly for project stream reaches R2-4a, R2-4b, R2-2, and R2-3; coarsened or increased slightly for project stream reach R2-4c; and remained the same for project stream reach R1. The bed material d84 fined or decreased for project stream reaches R1, R2-2, R2-3, R2-4a, and R2-4c; and coarsened or increased for project stream reach R2-4b. During the pebble counts, Mulkey noted that herbaceous vegetation is thriving in the subject stream reaches. This vegetation appears to be catching finer bed materials such that the actual stream bed is overlain with a thin layer of vegetation, root mass, and trapped finer materials. Upon further observation, coarser bed materials not reflected in the described pebble counts could be found directly under the layer of organics and trapped finer bed materials. Mulkey believes that this is the reason for the fining of the bed material reflected by the pebble counts for some reaches. The monitoring results continue to suggest that on-site sediment supply from RFC is being greatly reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and several years may be needed to observe a consistent bed material.

Stream bank stability monitoring was not conducted, as these monitoring practices are scheduled to be performed using BEHI and sediment transport estimates during Monitoring Years 3 and 5. BEHI information was collected during the existing condition surveys and sediment transport rates were subsequently developed. The resulting information will serve as baseline data for stream bank stability at RFC and is presented in Table IX. The raw data for this table can be viewed in Appendix E.

Both of the crest gages (one each at Reach R1 and Reach R2) were checked during the Monitoring Year 2 surveys to monitor hydrology at RFC. Deposition was observed above the bankfull stage across RFC during the Monitoring Year 2 surveys, suggesting that a flood event in excess of the bankfull event. Both of the crest gages recorded flood stages in excess of the bankfull stage. Both of the crest gages were reset after checking stage measurements to record future events. Table X lists the information related to the verification of bankfull events at RFC for Monitoring Year 1 while the raw data can be found in Appendix E. The evidence recorded by the crest gages indicated a storm event producing a stage in excess of the bankfull storm occurred at RFC during Monitoring Year 2. Documentation of the second bankfull event at RFC during the monitoring period

suggests success with regards to hydrologic monitoring at RFC and also satisfies the requirement that a minimum of two bankfull events, each occurring in two separate monitoring years, be documented within the five-year monitoring period.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 2 stream monitoring practices. Photos were taken from each of the eight permanent photo reference points. No stream problems were documented through the photo comparison process. A project-wide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. The project-wide visual assessment did not reveal any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. Table XII presents the findings of no stream problem areas. As noted in the vegetation monitoring section above, root mats for both the woody and herbaceous vegetation are clearly visible along the edges of water for the project stream reaches. Such vegetation growth is contributing greatly to the restoration of stream stability at RFC. The smaller reaches (R1, R2-4 a, b, and c) have shown tremendous success with their reconnection to the floodplain. As a result, vigorous establishment of herbaceous wetland vegetation is occurring within the riparian buffers along these reaches. Given the relative small capacity of these streams, the described vegetation has begun to encroach into the stream channel, creating the elevation difference noticeable in reaches R1 and R2-4c. Additionally, the increased roughness created by the vegetation in the channel allows for some of the upstream sediment to accumulate within the vegetation mats. Reach R2-4a is an example of where this activity has occurred. The denuded upstream channel (off-site) offers a sediment source and the establishing vegetation is trapping the finer materials creating a bed for the next layer of vegetation. Reach R2-4b was influenced similarly by the encroaching vegetation, but not to the same degree as the other reaches. Given that there are no areas of scour, bare banks, or sparse vegetation, Mulkey believes this aggradation does not imply future stability problems. Actually, the vegetation responsible for the aggradation is contributing to increased grade control, channel stability, and providing exceptional instream habitat. It is Mulkey's belief that over time, woody vegetation will out compete the current herbaceous vegetation, and the channel will begin to show a trend back towards the originally restored conditions. Other field observations made during the Monitoring Year 2 include the presence of large minnows and/or small fish in the deeper restored pools. Fish of this size and number had not been previously observed at RFC by Mulkey pre or post construction. Based on the positive results of the stream monitoring for Monitoring Year 2 at RFC, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

3.2.5 Stream Monitoring Results for Year 3 of 5

Between late September and early October 2010, the stream monitoring for Monitoring Year 3 was conducted. The methodologies described in the Stream Monitoring Methodology Section above were used for the stream monitoring at RFC for Monitoring Year 3. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring as described in detail above. The results of these surveys were used as the basis for the morphometric monitoring, including stream dimension, pattern and profile.

All of the seven cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 3 with all previous photos at each of the seven cross sections. Appendix E provides an overlay of the Monitoring Years 1, 2 and 3 as well as baseline conditions, along with the raw data for each cross section.

The comparison of the stream dimension data between the baseline conditions and Monitoring Years 1, 2, and 3 for each of the project stream reaches showed very positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches were experiencing the expected minor adjustments to the width to depth ratios, entrenchment ratios, and depth. Each of these trends was indicative of movement toward increased stream stability with the primary contributors being well established vegetation (root mass) and natural channel adjustments. The cross section photo comparisons of the baseline conditions with Monitoring Years 1, 2, and 3 further support these conclusions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radius of curvature, meander wavelength, and to determine meander width ratio. The results of the pattern surveys are presented in Table VIII. The comparison of the baseline condition with the stream pattern data for Monitoring Years 1, 2, 3 for each of the project stream reaches showed positive results, all of which were comparable to the originally proposed design parameters. The results showed that all of the reaches have experienced minor adjustments attributed to vegetation establishment and natural channel adjustments. Some of the fluctuations in the data can also be attributed to the standard deviation associated with human error in data collection and measurement. Overall the data suggest the reaches are beginning to reach equilibrium in the pattern measurements which would be attributed to the streams reaching stability. Noteworthy outliers in the data can be found in low belt widths, however these specific measurements occur where the valley takes a significant turn thus compromising the measurement methodology. In the field, each of these areas are showing stability in the visual assessment and other pattern measurements.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool-to-pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. Comparisons of the longitudinal profiles for the baseline conditions and Monitoring Years 1, 2, and 3 for each of the monitored project stream reaches fell within the ranges for each parameter as set forth by the design. Comparisons of the baseline data and results up to Monitoring Year 3 did not show excessive aggrading or degrading. Overlays for the longitudinal profiles can be found in Appendix E along with the raw data for Monitoring Year 3.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII, while overlays of the percent accumulation graphs for the baseline conditions through Monitoring Year 3 are shown in Appendix E. Raw data for Monitoring Year 3 can be found behind each respective graph.

The comparison of the results of the pebble counts for Monitoring Year 2 and Monitoring Year 3 showed varied fluctuation of the d50 and d84 bed material along the sampled project stream reaches. Most of these fluctuations were significant in that they moved toward the original designed substrate size. The d50 bed material coarsened significantly for project stream reaches R1, R2-3, R2-2, and R2-4b, which now closely resembles the designed (proposed) substrate. The d50 bed material slightly coarsened for the project stream reach R2-4a and actually decreased or fined for R2-4b. The d84 bed material coarsened for project stream reaches R1, R2-2, R2-3, and R2-4a. The d84 bed material decreased or fined for R2-4b and R2-4c. As mentioned in Monitoring Year 2, Mulkey noted that herbaceous vegetation was thriving in the areas containing R2-4a, b, and c. This vegetation coupled with the degraded channel upstream of R2-4b could attribute to the fining of this reach. R2-4c is spring fed and at this time appears the silt bed may become the stable bed material as large, purging storm flows are not experienced in this reach. As for the remaining streams, the coarsening of the bed was anticipated in the design parameters and the presence of the coarser substrate indicates stability is being reached and the finer materials left after construction are no longer present. The monitoring results continue to suggest that on-site sediment supply from RFC is being greatly reduced as a result of the restoration. As noted earlier, the success criteria for the bed material will be determined at the end of the five-year monitoring period when data can be reviewed and compared to the proposed channel material types. Fluctuations in bed materials will likely continue to occur and the complete monitoring period may be needed to observe a consistent bed material in all project reaches.

Stream bank stability monitoring was conducted as required for Monitoring Year 3 using BEHI and sediment transport estimates. The current steam bank stability results showed a significant reduction in sediment exports when compared with 2006 pre-construction estimates. The 2006 pre-construction sediment export values for RFC were originally estimated to be 445 tons per year. Monitoring Year 3 sediment export values for RFC currently show that 26.6 tons per year are currently leaving the site, which equates to 418.4 tons per year reduction in sediment export as depicted in Table IX. As outlined in the success criteria, monitoring of the stream bank stability will occur once again in Year 5 and the ultimate success of the project will then be determined.

Both of the crest gages (one each at Reach R1 and Reach R2) were checked during the Monitoring Year 3 surveys to monitor hydrology at RFC. Deposition was observed above the bankfull stage across RFC during the Monitoring Year 3 surveys, suggesting a flood event in excess of the bankfull stage. Accordingly, both of the crest gages recorded flood stages in excess of the bankfull stage. Both of the crest gages were reset after checking stage measurements to record future events. Table X lists the information related to the verification of bankfull events at RFC for Monitoring Year 3 while the raw data can be found in Appendix E. Documentation of the third bankfull event at RFC during the

monitoring period suggests success with regards to hydrologic monitoring at RFC. This third bankfull event, in as many monitoring years, also exceeds the required minimum of two bankfull events to have occurred and be documented within the five-year monitoring period.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 3 stream monitoring practices. Photos were taken from each of the eight permanent photo reference points. Appendix C includes all of the described photos and provides comparison of the photos between the baseline conditions through Monitoring Year 3. No stream problems were documented through the photo comparison process. A projectwide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. The project-wide visual assessment did not reveal any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. Table XII presents the findings of no stream problem areas.

Overall, the Monitoring Year 3 data illustrates a stream system reaching equilibrium in terms of projected adjustments in pattern, dimension, profile, substrate development, and bank stability. It can still be expected to see slight variations within the data set over the next two years of monitoring, but these will be most likely be attributed to inherent error in data collection and measurement and/or the natural tendencies of an active, dynamic system. The compilation of three years of monitoring data strongly suggest the RFC project has been successfully restored to a stable stream system in all stream related monitoring aspects including the established vegetation success criteria. Since the project is progressing in a positive direction, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

3.2.6 Stream Monitoring Results for Year 4 of 5

In early October 2011, the stream monitoring for Monitoring Year 4 was conducted. The methodologies described in the Stream Monitoring Methodology Section above were used for the stream monitoring at RFC for Monitoring Year 4. Detailed surveys were conducted along the project stream reaches specified to be surveyed for annual monitoring as described in detail above. The results of these surveys were used as the basis for the morphometric monitoring, including stream dimension, pattern and profile.

All of the seven cross sections were surveyed to measure the bankfull width, floodprone width, bankfull cross sectional area, bankfull mean depth, bankfull max depth, width to depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius. The results of the cross section surveys are presented in Table VIII. Appendix D compares photos taken during Monitoring Year 4 with all previous photos at each of the seven cross sections. Appendix E provides an overlay of the Monitoring Years 1 through 4 as well as baseline conditions, along with the raw data for each cross section.

The comparison of the stream dimension data between the baseline conditions and Monitoring Years 1 through 4 for each of the project stream reaches indicate increased stability as the variance in data has stabilized. This variance can be attributed to expected Annual Monitoring Report (Year 4 of 5)

minor adjustments to the width to depth ratios, entrenchment ratios, and depth associated with the establishment of vegetation (root mass) and minor channel adjustments; however it is more likely to be a result of human error in data collection techniques. Nonetheless, the data remains within the design tolerances and is increasingly consistent with data collected in previous monitoring years. The cross section photo comparisons of the baseline conditions with Monitoring Years 1 through 4 further support these conclusions, as no concerns, problems, or negative trends were documented.

The pattern for all of the stream reaches was surveyed to measure the parameters of sinuosity, belt width, radius of curvature, meander wavelength, and to determine meander width ratio. The results of the pattern surveys are presented in Table VIII. Similar to the results in the dimension variables, the pattern variables are becoming increasingly consistent as more monitoring data becomes available. The data compiled for Monitoring Year 4 is a subset of the design variable ranges in all instances except in belt width values. As in previous years, the minimum belt width values are attributed to locations where the valley changes direction thus compromising the ability to accurately measure belt width. Nonetheless, field verification has confirmed these areas are experiencing the same level of stability as the rest of the project.

Longitudinal profile surveys were conducted along each of the project stream reaches specified for annual monitoring surveys. The surveys were performed to measure the parameters of bankfull slope, riffle length, riffle slope, pool length, and pool-to-pool spacing. The results of the longitudinal profile surveys are presented in Table VIII. Over successive monitoring years, the longitudinal profiles have become the least accurate tool when comparing overlays (Appendix E). The natural variance expected within a reach is overshadowed by the increased amount of human error associated with beginning and ending the survey in reproducible locations compounded by computer projections of distances calculated between survey shots. Without precisely reproducing each individual shot, the accuracy of the distance calculated for stream length is directly dependent upon the number of shots taken along a reach and indirectly dependent upon the distance of the reach and bankfull width. Thus if the distance along the channel differs for each year in known locations (i.e stream crossings, structure locations, ect.) the overlay will incorrectly indicate aggradation or degradation. This is inconsistent with the calculated variables of slope, sinuosity, depth, bankfull area, and bankfull width calculated at known locations through the reaches. Therefore, without a more developed method of determining distances to be able to accurately compare the same locations along a reach, the implications of the overlays are not as reliable as the calculated variables. Given this construct, the vertical indicators are consistent with the design parameters and with previous monitoring years' calculated variables indicating stability throughout the project.

Modified Wolman pebble counts were repeated at each of the project stream reaches to classify the stream bed materials for comparison to the baseline conditions. The results of the pebble counts are presented in Table VIII, while overlays of the percent accumulation graphs for the baseline conditions through Monitoring Year 4 are shown in Appendix E. Pebble count raw data for Monitoring Year 4 can be found behind each respective graph.

Annual Monitoring Report (Year 4 of 5)

The comparison of the results of the pebble counts for Monitoring Year 3 and Monitoring Year 4 showed varied fluctuation of the d50 and d84 bed material along the sampled project stream reaches. The d50 and d84 bed material decreased or fined for R1, R2-4b and R2-4c. The d50 and d84 bed material remained essentially stable for stream reaches R2-4a, R2-3 and R2-2. As mentioned in Monitoring Years 2 and 3, Mulkey noted that herbaceous vegetation was thriving in the areas surrounding R2-4a, b, and c. This vegetation coupled with the degraded channel upstream of R2-4b could attribute to the fining of this reach. R2-4c is spring fed and at this time appears silt may become the stable bed material as large, purging storm flows are not experienced in this reach. With the consistency in the data to present, the indication is R1, R2-4a, and R2-4c will be stable C5/6 or sand/silt bed streams while R2-4b and R2 will be stable C4/5 or small gravel bed streams.

No stream bank stability monitoring was conducted for Monitoring Year 4 using BEHI and sediment transport estimates. Previous sediment transport estimates are shown in Table IX. As outlined in the success criteria, monitoring of the stream bank stability will occur once again in Year 5 and the ultimate success of the project will then be determined.

The crest gages (one each at Reach R1 and Reach R2) were not checked during the Monitoring Year 4 surveys as the previous three years have exceeded the monitoring success criteria. However, wrack lines and alluvial deposition was observed above the bankfull stage across RFC during the Monitoring Year 4 surveys, suggesting a flood event in excess of the bankfull stage. Table X lists the information related to the verification of bankfull events at RFC for the previous monitoring years while the raw data can be found in Appendix E.

Photo documentation and project-wide visual assessment were used to complement the other Monitoring Year 4 stream monitoring practices. Photos were taken from each of the eight permanent photo reference points. Appendix C includes all of the described photos and provides comparison of the photos between the baseline conditions through Monitoring Year 4. No stream problems were documented through the photo comparison process. A projectwide visual assessment was conducted along each of the project stream reaches to identify any specific stream problem areas. The project-wide visual assessment did not reveal any specific stream problem areas. Table XI presents the results of the project-wide visual assessment. No stream problems areas were identified during the monitoring period (Table XII).

Overall, the Monitoring Year 4 data illustrates a stream system reaching equilibrium in terms of projected adjustments in pattern, dimension, profile, substrate development, and bank stability. It can still be expected to see slight variations within the data set over the next year of monitoring, but these will be most likely be attributed to inherent error in data collection and measurement and/or the natural tendencies of an active, dynamic system. The compilation of four years of monitoring data strongly suggest the RFC project has been successfully restored to a stable stream system in all stream related monitoring aspects including the established vegetation success criteria. Since the project is progressing in a positive direction, Mulkey does not propose any additional recommendations or actions other than to proceed with the annual stream monitoring.

4.0 Project Monitoring Methodology

Success criteria for stream mitigation sites are based on guidelines established by the USACE, US Environmental Protection Agency (USEPA), NC Wildlife Resources Commission (NCWRC) and the NCDWQ (USACE et. al, 2003). These guidelines establish criteria for monitoring both hydrologic conditions and vegetation survival. These same guidelines were used to develop the monitoring methods, frequencies, and success criteria discussed herein for RFC and further described in detail in the approved mitigation report (Mulkey Engineers and Consultants, 2008). RFC site conditions will be monitored annually during the latter part of the growing season months (August, September, and October) over the five-year monitoring period. This monitoring period complies with the requirements set fourth in the Full Delivery RFP 16-D06028. Monitoring results will be documented on an annual basis, with the associated reports submitted to the NCEEP as evidence that the established project goals and objectives are being achieved. The results of annual monitoring will be used to evaluate the degree of success RFC has achieved in meeting the said goals and objectives. In the event that goals are not being met, Mulkey will coordinate with the NCEEP to develop a plan for ameliorating the areas of concern.

5.0 References

Mulkey Engineers and Consultants. 2008. Tributary to Reedy Fork Creek Stream Restoration Mitigation Report. July 2008.

NCEEP. 2005. Content, Format, and Data Requirements for NCEEP Monitoring Reports. Version 1.1, September 16, 2005. NCDENR, NCEEP. 17 pp.

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena, 22:169-199.

Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado.

Rosgen, D.L. 1998. The Reference Reach – A Blueprint for Natural Channel Design. From Proceedings of the Wetlands and Restoration Conference, March 1998, Denver CO. Wildland Hydrology, Pagosa Springs, CO.

Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health and Natural Resources.

USACE, USEPA, NCWRC, and NCDWQ. 2003. Stream Mitigation Guidelines. April 2003.

FIGURES

TABLES

Exhibit Table I. Project Restoration Approach and Mitigation Type Table Tributary to Reedy Fork Creek Stream Restoration / D06028-A						
Stream Reach ID		Mitigation Type	Original Channel Length (lf)	Restored Channel Length (lf)	Stream Mitigation Units (SMU)*	Comments
R1	P1/P2	R	1,409	1,632	1,600	Includes both P1 (connection to historic floodplain) and P2 (channel relocation with floodplain excavation)
R2-1	P2	R	906	819	819	P2 (channel relocation with floodplain excavation)
	P1/P2	R EII 2,522		853	853	Includes both P1 (connection to historic floodplain) and P2 (channel relocation with floodplain excavation)
R2-2	P2		418	167	Includes both P2 (channel relocation with floodplain excavation) and EII	
	P1/P2 R	R		1,273	1,213	Includes both P1 (connection to historic floodplain) and P2 (channel relocation with floodplain excavation)
R2-3	Р2	R	1,584	1,771	1,741	P2 (channel relocation with floodplain excavation)
R2-4a	Р2	R	289	231	195	P2 (channel relocation with floodplain excavation)
R2-4b	P2	R	226	307	276	P2 (channel relocation with floodplain excavation)
R2-4c	Р2	R	157	208	208	P2 (channel relocation with floodplain excavation)
19 2 m		Totals	7,093	7,512	7,072	

* Stream Mitigation Units do not include restored channel outside of easement and within crossings.

R = Restoration	P1 = Priority I
EII = Enhancement II	P2 = Priority II

ų

Exhibit Table II. Project Activity and Reporting History						
Tributary to Reedy Fork Creek Stream Restoration / D06028-A						
Activity or Report	Scheduled Completion	Data Collection Completion	Actual Completion or Delivery			
Restoration Plan Prepared	Dec-06	Oct-06	10-Jul-07			
Restoration Plan Approved	Jan-07	N/A	30-Jul-07			
Final Design - 90%	Feb-07	N/A	10-Aug-07			
Construction	Aug-07	N/A	14-Apr-08			
Temporary S&E mix applied to entire project area	Aug-07	N/A	14-Apr-08			
Permanent seed mix applied to entire project area	Aug-07	N/A	14-Apr-08			
Planting live stakes	Dec-07	N/A	14-Apr-08			
Planting bare roots	Dec-07	N/A	14-Apr-08			
End of Construction	Dec-07	N/A	14-Apr-08			
Survey of As-built conditions (Year 0 Monitoring - Baseline)	Jan-08	May-08	28-May-08			
Monitoring						
Year 1 - 2008	Dec-08	Sep-08	Dec-08			
Year 2 - 2009	Dec-09	Sep-09	Nov-09			
Year 3 - 2010	Dec-10	Oct-10	Dec-10			
Year 4 - 2011	Dec-11	Oct-11	Dec-11			
Year 5 - 2012	Dec-12	N/A	N/A			

Bolded items represent those events or deliverables that are variable. Non-bolded items

represent events that are standard components over the course of a typical project.
.

		II. Project Contacts	
	Tributary to Reedy Fork Cree	ek Stream Restoration / D06028-A	
Designer			
		6750 Tryon Road	
	Mulkey Engineers	Cary, NC 27518	
	and Consultants	Contact:	
		Emmett Perdue, PE Tel. 919.858.1874	
Construction	n Contractor		
		P.O. Box 796	
	Vaughan Contracting, LLC	Wadesboro, NC 28170	
		Contact:	
		Tommy Vaughan Tel. 704.694.6450	
Planting Coo	ordinator		
		150 Black Creek Road	
	Bruton Nurseries and Landscapes	Fremont, NC 27830	
		Contact:	
		Charles Bruton, Jr. Tel. 919.242.6555	
Seeding Con	tractor		
		P.O. Box 796	
	Vaughan Contracting, LLC	Wadesboro, NC 28170	
		Contact:	
		Tommy Vaughan Tel. 704.694.6450	
eed Mix So	urces		
		P.O. Box 669	
	Evergreen Seed	Willow Spring, NC 27592	
	-	Contact:	
		Wister Heald Tel. 919.567.1333	
Nursery Stoc	k Suppliers		
·		762 Claridge Nursery Road	
	North Carolina Forestry Service	Goldsboro, NC 27530	
	Claridge Nursery	Contact:	
		James West Tel. 919.731.7988	
Ionitoring I	Performers		
0		6750 Tryon Road	
	Mulkey Engineers	Cary, NC 27518	
	and Consultants	Contact:	
		Emmett Perdue Tel. 919.858.1874	

Exhibit Table IV. Project Backgro Tributary to Reedy Fork Creek Stream Restor	
Project County	Guilford County, North Carolina
Drainage Area [sq. mi(acres)]	
R1	0.028 (17.71)
R2-1	0.92 (591.5)
R2-2	0.51 (326.1)
R2-3	0.33 (210.9)
R2-4a	0.09 (55.7)
R2-4b	0.09 (55.7)
R2-4c	0.09 (55.7)
Drainage Impervious cover estimate (%)	
R1	2
R2-1	2
R2-2	2
R2-3	2
R2-4a	2
R2-4b	2
R2-4c	2
Stream Order	
R1	1
R2-1	2
R2-2	2
R2-3	2
R2-4a	1
R2-4b	1
R2-4c	1
Physiographic Region	Piedmont
Ecoregion	Southern Outer Piedmont
Rosgen Classification (As-built)	
R1, R2-1, R2-2, R2-3, R2-4a, R2-4b, R2-4c	C4
Cowardin Classification	R3UB3*
Dominat Soil Types	Enon-Mecklenburg
Reference Site ID	UT to Wells Creek
USGS HUC for Project and Reference	• <u>• • • • • • • • • • • • • • • • • • </u>
Project	03030002
Reference	03030002
NCDWQ Sub-basin for Project and Reference	· · · ·
Project	03-06-02 (Cape Fear)
Reference	03-06-04 (Cape Fear)
NCDWQ Classification for Project and Reference	· · · · · · · · · · · · · · · · · · ·
Project	C NSW
Reference	C NSW
Any portion of any project segement 303d?	Yes
Any portion of any project segment upstream of a 303d listed segment?	Yes
Reasons for 303d listing or stressor	Imparied Biological Integrity
Percent of project easement fenced	100

(R) Riverine (3) Upper Perennial (UB) Unconsolidated Bottom (3) Cobble-Gravel

					E	xhibit	Table Tril	V. Ste	m Cot to Ret	ints M edy Fo	onitor rk Cre	ing Ye: sek Str	ar 4 foi eam R	r Each estorai	Speci ion / I	thle V. Stem Counts Monitoring Year 4 for Each Species Arran, Triburary to Reedy Fork Creek Stream Restoration / D06028-A	Exhibit Table V. Stem Counts Monitoring Year 4 for Each Species Arranged by Plot Triburary to Reedy Fork Creek Stream Restoration / D06028-A	Plot					
								Plots	~								E	Initial Totale	Voca 1	Varia			
Species	1	2	3	4	5	9	7	80	6	10	=	12	13 1	14 1	15 1	16 Tot	-	_	- 10		Totals	Totals	Survival % C
Shrubs																							
Cornus amomum								_		-	-	_	_	-				_	-	-	0	0	%0
Trees																							ALC: NOT THE
Betula nigra		9	5			-		4	2	2	-	-		3 1	Ĺ	4	24	23	17	29	28	27	93%
Diospyros virginiana		2		2			7			1	3	-	5				25	26	17	21	17	19	90%
Juglans nigra	9				ς			-			2	4	3				0	0	0	28	21	21	75%
Pinus echinata				-									2				19	15	9	5	4	4.	80%
Pinus strobus				7								3		_			14	14	4		s	9	75%
Pinus virginiana				-									1				11	15	~	4	e	ю	75%
Prunus serotina												_			_	-	4	4	0	0	0	0	NLE
Plantanus occidentalis				-	Э		e		-	3	4			3	7 7		0	0	0	32	31	31	97%
Quercus alba	7	2		7							9	4			3 1	64	20	23	17	23	21	22	6%
Quercus falcata														_		1 3	32	45	25	2	12	5	100%
Quercus michauxii			~	m	-	-	-	7	4	4	-		5	3	3 4		28	32	28	38	33	32	84%
Quercus nigra		-		-	-	6		=	4	4					_	1 5	52	37	24	38	31	33	87%
Quercus phellos	12	-	S	3	m	s S	-	3		4	-	_				ę	62	57	40	45	38	39	87%
Salix nigra									2			_					2	2	2	2	2	2	100%
Totals	20	12	13	16	13	16	6	21	13	18	18	13	13 1	13 1	18 1	15 29	294	294	189	276	241	241	87%
																Š	Stems Per Acre Summary	Acre Sumn	1ary				
Plot Acreage	0.025	0.025	0.025 0.025 0.025 0.025 0.025 0.025 0.024	0.025	0.025	0.025	the second se	0.025 0.025		0.025 0	0.025 0.	0.025 0.	0.024 0.0	0.026 0.025	25 0.025		Min	Ave	Max				
Stems/Acre	803.2	487.8	803.2 487.8 530.6 637.5 522.1 645.2 376.6	637.5	522.1	645.2		850.2 530.6		734.7 717.1 524.2	17.1 5	24.2 5:	532.8 50	503.9 72	725.8 604	604.8 3	377	608	850				

^A "Initial Totals Adjusted" represents the most accurate species occurrence, following corrections for misidentification and other issues during the initial counting process.

^B "Year 2 Totals" represents the current species totals (100% survival) following replanting in Year 1 (2008).

 $^{\rm C}$ "Survival %" represents the Year 4 Totals compared to the Year 2 Totals.

NLE - This species no longer exists within the permanent monitoring vegetation plots.

		getative Problem Areas k Stream Restoration / D06028-A	
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)
No problem areas observed in Year 4 (2011)	All project reaches	N/A	N/A
No problem areas observed in Year 3 (2010)	All project reaches	N/A	N/A
No problem areas observed in Year 2 (2009)	All project reaches	N/A	N/A
Site replanted late winter 2009 following Year 1 (2008) due to mortality from drought	All project reaches	N/A	N/A
Scattered bare root planting mortality in Year 1 (2008)	All project reaches	Drought	N/A

*:

			EX	hibit] ributa	[able] ury to]	VII. B. Reedy	aseline Fork C Rea	Morpl Treek S ch R1 ()	Exhibit Table VII. Baseline Morphology and Hydraulic Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R1 (1.632 ft)	and Hy Restor:	/drauli ation /]	c Sum D06028	nary -A						
PARAMETERS	D	SGS G	USGS Gage Data		Regional	Regional Curve Interval	nterval	Pre-Exi	Pre-Existing Condition	idition	Project I	Project Reference Stream	Stream		Design	Γ		As-built	
Dimension - Riffle	Min	H	Max	Med	ΓΓ	nr	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)	1	'			1	ł	1	3.0	8.1	5.6	6.2	8.6	7.2	-	1	6.9	7.0	9.1	8.0
Floodprone Width (ft)	1	 	-	;	;	1	1	3.5	26.7	15.1	15.3	25.0	20.5	13.4	28.0	20.5	34.3	52.3	43.3
BKF Cross Sectional Area (sq. ft.)	1		_		;	;	1	3.2	7.8	5.5	3.9	6.3	5.4	1	1	4.0	3.8	4.4	4.1
BKF Mean Depth (ft)	1	-				1	1	0.97	1.06	1.01	0.56	1.02	0.79	ł	1	0.58	0.49	0.54	0.52
BKF Max Depth (ft)	ł				,	;	1	1.15	1.75	1.45	0.64	1.38	1.02	0.47	1.01	0.75	0.89	1.16	1.03
Width/Depth Ratio	1	'	-	-	:	1	1	2.9	8.4	5.6	6.1	12.6	9.1	-	1	12.0	12.9	18.5	15.7
Entrenchment Ratio	ł	'	_		;	1	;	1.1	3.3	2.2	1.9	4.1	3.0	1.9	4.1	3.0	3.8	7.5	5.7
Wetted Perimeter (ft)	1	-		;	;	;	1	ł	1	7.59	;	1	ł	-	1	8.1	7.5	9.3	8.4
Hydraulic Radius (ft)	1			-	1	1	1	1	;	0.73	I	1	1		ł	0.49	0.47	0.50	0.49
Pattern	Min	n Max	-	Međ	ΓΓ	Π	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	+	!		,	1	1	ł	1	1	I	10.0	35.0	20.9	9.7	33.9	20.3	3.7	32.4	12.2
Radius of Curvature (ft)	I		-		:	1	1	1	1	ł	2.3	31.8	13.5	2.2	30.8	13.1	7.1	26.0	14.7
Meander Wavelength (ft)	I	-			;	;	ł	1	1	1	35.0	70.0	50.0	33.9	67.9	48.5	32.5	66.4	45.4
Meander Width Ratio	ł	_			;	1	ł	1	1	1	1.4	4.9	2.9	1.4	4.9	2.9	0.5	4.1	1.5
Profile	Min	-	Max N	Med	ΕF	Π	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)	ł	-	_	1	1	,	ł	9.1	67.7	38.4	2.5	25.4	13.8	2.4	24.7	13.4	2.3	10.8	5.2
Riffle Slope (ft/ft)	1	-	_	+	-	-	1	0.014	0.075	0.029	0.016	0.085	0.040	0.016	0.083	0.039	0.011	0.102	0.040
Pool Length (ft)	1	-	+	-	-	-	1	35.7	96.9	66.0	7.3	27.5	14.6	7.1	26.6	14.2	7.2	20.9	13.5
Pool Spacing (ft)	ł	-	_	-	1	+	;	134.2	253.1	180.5	16.5	62.8	36.5	16.0	60.9	35.4	19.1	52.9	35.1
Substrate																			
d50 (mm)		'				1			1.1			6.2			1.1			4.9	
d84 (mm)		1				T.			16.8			72.7			16.8			25.7	
Additional Reach Parameters													Γ						
Bankfull Slope (ft/ft)		i				I			0.0237			0.0199			0.0197			0.0198	
Channel Length(ft)		1				I			1409			496			1693			1632	
Valley Length (ft)						1			1311			352			1311			1311	
Sinuosity						1			1.07			1.41			1.29			1.24	
Rosgen Classification				┥		:		De	Degraded E5b	5b		C4/1			C4/1			C4/1	
																		i	

Jesignation of the server free free free free free free free				Reach R2-1 (819 ft)			Reac	Reach R2-1 (819 ft)	(819 ft)										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETERS	USG	S Gage L)ata	Regiona	l Curve Ir	iterval	Pre-Exis	ting Con	<u> </u>	Project F	ceference	Stream		Design			As-built	
BKT with (f) 1 2 2 1		Min	Max	Med	ΓΓ	n	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BKF Width (ft)		1	1	7.0	27.0	14.0	10.6	11.4	11.0	6.2	8.6	7.2	;	ł	15.8	;	:	15.8
Consistentional Arreace, (i)		-	1	-	:	1	1	48.9	50.6	49.8	15.3	25.0	20.5	30.5	64.0	46.7	:	1	66.1
BKF Mean Depth (b) 0.00 2.30 1.70 1.86 1.70 0.56 1.02 0.70 1.26 1.75 2.47 2.13 0.66 1.36 1.02 1.03 1.26	BKF Cross Sectional Area (sq. ft.)		1		9.0	40.0	21.0	17.0	21.2	19.1	3.9	6.3	5.4	1	;	20.0	1	1	18.3
BKF Max Depth (h) · · · · · · · · · · · · · · · · · · ·	BKF Mean Depth (ft)		1	1	06.0	2.30	1.70	1.60	1.86	1.73	0.56	1.02	0.79	1	1	1.26	1	;	1.15
Widh/Deph Ratio i<	BKF Max Depth (ft)	-	1	1	-	1	1	1.75	2.47	2.13	0.64	1.38	1.02	1.03	2.22	1.64	I	1	1.94
Entrenchment Ratio	Width/Depth Ratio		1	-	-	;	;	6.1	6.6	6.4	6.1	12.6	9.1	1	1	12.5	ł	1	13.8
Wated Perimeter (f)	Entrenchment Ratio		ł	1		1	1	4.4	4.6	4.5	1.9	4.1	3.0	1.9	4.1	3.0	1	1	4.2
Hydraulic Radius (f)	Wetted Perimeter (ft)	+	1	-	-	-	;	1	-	14.5	1	:	-	1	1	18.3	1	1	16.7
		1	ł	1	1	1	1	-	-	1.32	1	1	;	1	1	1.09	1	1	1.09
Channel Betwidti (t) </th <th></th> <td>Min</td> <td>Мах</td> <td>Med</td> <td>TL</td> <td>ΩΓ</td> <td>Eq</td> <td>Min</td> <td>Max</td> <td>Med</td> <td>Min</td> <td>Max</td> <td>Med</td> <td>Min</td> <td>Max</td> <td>Med</td> <td>Min</td> <td>Max</td> <td>Med</td>		Min	Мах	Med	TL	ΩΓ	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Radius of Curvature (f)	Channel Beltwidth (ft)	1	1	-	;	1	1	4.3	44.6	24.3	10.0	35.0	20.9	22.1	77.5	46.3	17.9	39.7	28.3
		1	4	I	1	ł	1	19.8	54.3	33.8	2.3	31.8	13.5	5.1	70.4	29.9	24.2	85.6	41.1
Meander Width Ratio	Meander Wavelength (ft)	1	1		1	1	!	53.6	114.7	79.9	35.0	70.0	50.0	77.5	154.9	110.7	94.3	143.2	115.4
		1	1		-	-	1	0.4	4.1	2.2	1.4	4.9	2.9	1.4	4.9	2.9	1.1	2.5	1.8
Riffie Lengti (f)		Min	Max	Med	TL	UL	Eq	Min	Max	Med	Min	Мах	Med	Min	Max	Med	Min	Мах	Med
Riffle Slope (f), f) - - - - - - - - - - - 0.007 0.005 0.005 0.003 0.00	Riffle Length (ft)	1	1	ł	1	-	;	9.0	104.8	38.4	2.5	25.4	13.8	5.6	56.3	30.5	6.2	11.6	9.6
Pool Length (f) 14.2 75.5 36.7 7.3 27.5 14.6 16.2 60.8 32.4 20.2 36.4	Riffle Slope (ft/ft)	I	ł	1	1	I	1			0.0169	0.016	0.085	0.040	0.005	0.028	0.013	0.003	0.031	0.017
Pool Spacing (ft) - - - - - 44.34 165.18 97.35 16.5 6.28 36.6 139.0 80.8 83.0 82.9 83.0 82.9 83.0 82.9 83.0 82.9 83.0	Pool Length (ft)	1	ł	1	I	ŧ	I	14.2	75.5	36.7	7.3	27.5	14.6	16.2	60.8	32.4	20.2	36.4	26.7
d50 (mm) $ -$	_	1	!	ł	1	1	-		165.18	97.35	16.5	62.8	36.5	36.6	139.0	80.8	38.0	82.9	64.6
	Substrate																		
	d50 (mm)		ł			1			17.5			6.2			17.5			3.0	
	d84 (mm)		ł			ł			81.3			72.7			81.3			19.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Additional Reach Parameters																		
906 496 802 745 352 745 1.22 1.41 1.08 Decraded F4/1 741 745	Bankfull Slope (ft/ft)					1			0.0067			0.0199			0.0074			0.0075	
745 352. 745 745 - 745 - 745 - 745 - 745 - 745 1.22 - 1.41 - 1.08	Channel Length(ft)		1			ł			906			496			802			819	
1.22 1.41 1.08	Valley Length (ft)		1			ł			745			352.			745			745	
Decraded F4/1 C4/1 C4/1	Sinuosity		ł			1			1.22			1.41			1.08			1.10	
	Rosgen Classification		-			ł		Deg	graded E4	1/1		C4/1			C4/1			C4/1	

		Ē	Exhibit T Tribu	Table V Itary to	ibit Table VII. cont. Baseline Morphology and Hydraulic Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R2-2 (2.544 ft)	t. Baseli Fork (Reac	ine Mo Creek S h R2-2	aseline Morphology rk Creek Stream R Reach R2-2 (2.544 ft)	gy and] Restora	Hydrau ution /]	tlic Sur 006028	nmary -A						
PARAMETERS	nsı	USGS Gage Data	Data	Region	Regional Curve Interval	Interval	Pre-Exi	Pre-Existing Condition	lition	Project Reference Stream	teference	Stream		Design			As-built	
Dimension	Min	Мах	Med	ΓΓ	IJ	Eq	Min	Max	Međ	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)	ł	1	!	5.5	20.0	11.0	14.1	15.5	14.8	6.2	8.6	7.2	1	1	15.8	13.5	14.8	14.3
Floodprone Width (ft)	1	ł	I	1	1	1	46.1	82.5	64.3	15.3	25.0	20.5	30.5	64.0	46.7	61.1	85.0	73.6
BKF Cross Sectional Area (sq. ft.)	1	1	1	6.0	28.0	15.5	19.6	21.6	20.6	3.9	6.3	5.4	1	1	20.0	14.5	17.6	15.7
BKF Mean Depth (ft)	1	1	1	0.75	2.00	1.40	1.27	1.53	1.40	0.56	1.02	0.79	1	1	1.26	0.99	1.31	1.03
BKF Max Depth (ft)	1	1	1	1	1	ł	1.59	2.11	1.79	0.64	1.38	1.02	1.03	2.22	1.64	1.53	2.23	1.79
Width/Depth Ratio	1	1	1	;	1	1	9.2	12.2	10.7	6.1	12.6	9.1	1	1	12.5	10.3	14.8	13.3
Entrenchment Ratio	1	1	1	1	1	ł	3.0	5.8	4.4	1.9	4.1	3.0	1.9	4.1	3.0	4.1	6.3	5.2
Wetted Perimeter (ft)	1	1	1	1	1	1	1	1	17.6	1	1	1	1		18.3	15.1	15.5	15.3
Hydraulic Radius (ft)	1	1	;	;	ł	1	1	ł	1.17	1	1	1	1	;	1.09	0.96	1.17	1.03
Pattern	Min	Max	Med	LL	UL	Eq	Min	Max	Med	Min	Мах	Med	Min	Max	Međ	Min	Max	Med
Channel Beltwidth (ft)	1	1	1	1	1	1	10.3	94.8	39.6	10.0	35.0	20.9	22.1	77.5	46.3	14.3	65.6	33.4
Radius of Curvature (ft)	1	1	1	1	1	ł	15.9	76.7	45.6	2.3	31.8	13.5	5.1	70.4	29.9	17.3	66.8	33.0
Meander Wavelength (ft)	ł	1	1	1	ł	1	73.2	238.2	139.3	35.0	70.0	50.0	77.5	154.9	110.7	79.1	133.5	107.8
Meander Width Ratio	1	:	1	1	1	-	0.7	6.4	2.7	1.4	4.9	2.9	1.4	4.9	2.9	1.0	4.6	2.3
Profile	Min	Мах	Med	TT	IJ	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)	1	;	1	1	ł	•	6.43	91.81	28.91	2.5	25.4	13.8	5.58	56.3	30.47	3.9	17.1	9.5
Riffle Slope (ft/ft)	1	1	ł	1	1	ł	0.009	0.040	0.020	0.016	0.085	0.040	0.008	0.041	0.019	0.006	0.041	0.018
Pool Length (ft)	1	1	1	ł	ł	1	6.8	119.7	46.0	7.3	27.5	14.6	16.2	60.8	32.4	15.3	6.69	34.7
Pool Spacing (ft)	ł	1	1	1	-	*	35.3	343.6	143.8	16.5	62.8	36.5	36.6	139.0	80.8	37.2	9.66	63.5
Substrate															Γ		ĺ	Γ
d50 (mm)		·			I			50.9			6.2			50.9			6.0	
d84 (mm)		1			1			152.5			72.7			152.5			29.1	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)		1			1			0.0092			0.0199			0.0094			0.0096	
Channel Length(ft)		ł			1			2522			496			2490			2544	
Valley Length (ft)		1			1			2116			352			2116			2116	
Sinuosity		1			1			1.19			1.41			1.18			1.20	
Rosgen Classification		1			ł		De	Degraded E4/1	1/1		C4/1			C4/1			C4/1	

			Tribu	Reach R2-3 (1,771 ft)		R	Keach K2-3 (1,//1 II)	(1)(T) C-3	1 ft)									
PARAMETERS	SN	USGS Gage Data	e Data	Regi	Regional Curve Interval	ve Interv.		-Existing	Pre-Existing Condition		Project Reference Stream	e Stream		Design			As-built	
Dimension	Min	Max	Med	TL	n	Eq	l Min	n Max	k Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)			1	4.5	18.0	0.6 () 4.2	2 4.4	4.3	6.2	8.6	7.2	1	1	10.0	10.6	10.6	10.6
Floodprone Width (ft)	ł	1	1	-	1		7.8	32.7	7 20.3	15.3	25.0	20.5	19.3	40.5	29.5	78.5	78.7	78.6
BKF Cross Sectional Area (sq. ft.)	:	1	!	5.0	20.0	0.01	0 4.1	1 5.2	4.6	3.9	6.3	5.4	1	1	8.0	7.3	8.4	7.8
BKF Mean Depth (ft)	ł	1	. [0.6	1.7	1.1	0.93	3 1.23	3 1.08	0.56	1.02	0.79	1	1	0.80	0.69	0.79	0.74
BKF Max Depth (ft)	ł	1	1	1	1		1.11	1 1.76	5 1.35	0.64	1.38	1.02	0.65	1.40	1.04	1.19	1.34	1.27
Width/Depth Ratio	ł	1	1	1		1	3.4	4 4.7	4.1	6.1	12.6	9.1	ł	1	12.5	13.4	15.3	14.4
Entrenchment Ratio	:	1	1	I	-	1	1.8	3 7.8	4.8	1.9	4.1	3.0	1.9	4.1	3.0	7.4	7.4	7.4
Wetted Perimeter (ft)	1	1	1	1		!	8	ł	6.5	1	ł	1	. 1	1	11.6	10.9	11.1	11.0
Hydraulic Radius (ft)	I	1	1	ł	1		1	-	0.71	1	I	1	-	1	0.69	0.67	0.76	0.72
Pattern	Min	Max	Med	IL LL	NL	, Eq	l Min	n Max	x Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	:	1		-	-	1	3.0	0 67.0	0 26.9	10.0	35.0	20.9	14.0	49.0	29.3	5.9	61.6	26.8
Radius of Curvature (ft)	١.	I	1	1			12.2	2 76.6	6 30.7	2.3	31.8	13.5	3.2	44.5	18.9	14.9	64.7	24.8
Meander Wavelength (ft)	I	I	1	1	;		46.8	8 149.4	4 83.2	35.0	70.0	50.0	49.0	98.0	70.0	55.8	147.2	83.6
Meander Width Ratio	1	1	1	1	1	1	0.7	7 15.6	6 6.3	1.4	4.9	2.9	1.4	4.9	2.9	0.6	5.8	2.5
Profile	Min	Max	Med	IL	Π	, Eq	1 Min	n Max	x Med	Min	Мах	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)	1	1	1		-	-	4.3	3 42.3	3 18.7	2.5	25.4	13.8	3.5	35.6	19.3	5.5	15.2	8.9
Riffle Slope (ft/ft)	1	1	+	1	1	1	0.008	08 0.082	2 0.026	0.016	0.085	0.040	0.006	0.031	0.014	0.005	0.023	0.012
Pool Length (ft)	I	1	1	1	ł	1	4.8	8 85.2	2 31.8	7.3	27.5	14.6	10.2	38.4	20.5	15.9	27.7	20.9
Pool Spacing (ft)	1	ł	1	1	1	+	71.1	.1 296.3	.3 149.8	16.5	62.8	36.5	23.1	87.9	51.1	27.6	83.2	41.9
Substrate																		
d50 (mm)		-			1		_	0.2			6.2			0.2			6.5	
d84 (mm)		1		_	ł		_	6.1			72.7			6.1			18.4	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)		ł			1			0.0080	80		0.0199			0.0075			0.0073	
Channel Length(ft)		ł			I			1584	4		496			1734			1771	
Valley Length (ft)		1			I			1291	1		352			1305			1305	
Sinuosity		;			1		_	1.23	3		1.41			1.33			1.36	
Rosgen Classification	_	I						Degraded E5	ed ES		C4/1			C4/1			C4/1	
															1			1

FARMETERS USGS Gage That Regional Curve Intend Pre-Existing Condition Pre-				Exhib	it Tab ributa	le VII ry to I	. cont. Reedy]	Baseli Fork C Reac	ne Moj Freek S h R2-4s	Exhibit Table VII. cont. Baseline Morphology and Hydraulic Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R2-4a (231 ft)	gy and Restor:	Hydra ation /]	ulic Sur D06028	mmary i-A						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETERS		JSGS Ga	age Data		egional	Curve Ir	ıterval	Pre-Exi	isting Cor	dition	Project I	teference	Stream		Design			As-built	
				\vdash	led	LL	Π	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
	BKF Width (ft)	1	1		4	1	1	1	1	1	1	6.2	8.6	7.2	4	ł	7.1	1	1	1
9 1 -	Floodprone Width (ft)		1		-	1	1	ł	1		1	15.3	25.0	20.5	13.6	28.6	20.9	1	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BKF Cross Sectional Area (sq. ft.)		' 			-	1	1	1	;	;	3.9	6.3	5.4	1	1	4.0	1	1	
	BKF Mean Depth (ft)	1				, I	1	-	1	1	I.	0.56	1.02	0.79	1	1	0.57	1	,	:
Raio ··· </td <td>BKF Max Depth (ft)</td> <td>1</td> <td>1</td> <td></td> <td>_</td> <td>-</td> <td>ł</td> <td>I</td> <td>1</td> <td>1</td> <td>ł</td> <td>0.64</td> <td>1.38</td> <td>1.02</td> <td>0.46</td> <td>0.99</td> <td>0.73</td> <td>1</td> <td>1</td> <td>1</td>	BKF Max Depth (ft)	1	1		_	-	ł	I	1	1	ł	0.64	1.38	1.02	0.46	0.99	0.73	1	1	1
Italia ···<	Width/Depth Ratio	+	1	+	_	1	1	ł	1	;	ł	6.1	12.6	9.1	1	I	12.5	1	1	
tic (1) $$	Entrenchment Ratio	1			-	-	1	1	1	1	ł	1.9	4.1	3.0	1.9	4.1	3.0.	1	1	1
	Wetted Perimeter (ft)	1	1		-	1	1.	;	1	1	I	-	1	ł	1	1	1	:		1
Min Max Med LL UL Eq Min Max Med Min Min Max Med	Hydraulic Radius (ft)	+	1	_	_	+	1	1	1	1	I		1	ł	1	1	1	1	1	1
			\dashv	-	led	LL	IJ	Ŗ	Min	Max	Med	Min	Мах	Med	Min	Max	Med	Min	Max	Med
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	Channel Beltwidth (ft)	1				-	-	1	1	1	ł	10.0	35.0	20.9	9.6	34.6	20.7	12.5	25.4	18.1
	Radius of Curvature (ft)	1		+	_	-	1	1	1	1	ł	2.3	31.8	13.5	2.3	31.5	13.4	12.1	28.2	18.3
	Meander Wavelength (ft)	1				1	-	-	1	1	1	35.0	70.0	50.0	34.6	69.3	49.5	59.4	75.2	65.4
		1	-	-		1	-	1	1	ł	I.	1.4	4.9	2.9	1.4	4.9	2.9	ł	1	1
gth (ħ)2.52.5.413.82.52.5.213.64.113.4 c (ħ)2.52.5.413.82.52.5.213.64.113.4 c (ħ)2.513.60.0160.0050.0160.0050.026 gh (ħ)10.50.130.140.0050.0140.0050.026 gh (ħ)10.50.160.0560.0460.0660.0140.0570.026 h (ħ)10.50.160.0560.0460.0560.0160.0150.016 h (ħ)10.50.160.0560.0160.0160.016 h (ħ)0.160.0560.0260.0260.026 h (ħ) h (ħ) h (ħ) h (ħ)			-+	-	ed	H	Ы	Eq	Min	Max	Med	Min	Max	Med	Min	Мах	Med	Min	Мах	Med
c (t) (t) $$	Riffle Length (ft)	'	-	+	_ 	,	-	1	;	1	1	2.5	25.4	13.8	2.5	25.2	13.6	4.1	13.4	7.5
gth (th) 7.3 27.5 14.6 7.2 5.8 5.8 5.6 5.8 5.6 5.8 5.8 5.6 5.8<	Riffle Slope (ft/ft)	1	-	-	_	,	-	1	+	1	1	0.016	0.085	0.040	0.006	0.031	0.014	0.005	0.026	0.015
mg (t) - - - - - - 1 10.4 62.2 26.1 33.9 53.8 1 (mm) - - - - 16.5 62.8 36.5 16.4 62.2 26.1 32.9 53.8 1 (mm) - - - 0.2 6.1 73.7 6.1 73.7 1 (mm) - - - 6.1 72.7 6.1 73.7 73.7 1 (mm) - - - 6.1 72.7 6.1 73.7 73.7 1 (th) - - - 6.1 72.7 6.1 73.7 1 (th) - - - 0.0069 0.0199 0.0035 0.0080 1 (th) - - 215 32.6 32.6 23.1 1 (th) - - 21.3 35.2 178 178 1 (osity - - 13.5 1.496	Pool Length (ft)	1		+	-	,	-	;	;	1	:	7.3	27.5	14.6	7.2	27.2	14.5	5.8	29.5	17.2
		'	-		┦	;	:	-	;	;	-	16.5	62.8	36.5	16.4	62.2	26.1	32.9	53.8	44.3
(mm) - - 0.2 6.2 0.2 0.2 1 (mm) - - - 0.1 72.7 0.2 0.2 0 (fmm) - - - 0.1 72.7 0.1 0.1 0.2 0.2 $c(t/t)$ - - 0.1 72.7 0.19 0.19 0.1 0.2 0.1	Substrate																			
(mm) - - 6.1 72.7 6.1 6.1 (ft/ft) - - 6.1 72.7 6.1 72.7 (ft/ft) - - 0.0069 0.0199 0.035 72.7 gth(ft) - 289 496 226 72.6 gth(ft) - 215 352 178 76 uosity 1.35 1.41 1.27 127 uosity - 1.41 1.27 1.41 uosity - 1.41 1.27 1.41 1.27	d50 (mm)		1				1			0.2			6.2			0.2			0.4	
(f/f)0.00690.01990.0035 $gth(f)$ 2894962262 $gth(f)$ 215352178178 $uosity$ 1.351.411.271 $uosity$ n/a $C4/1$ $C4/1$ $C4/1$	d84 (mm)		1		_		1			6.1			72.7			6.1			7.3	
- - 0.0069 0.0199 0.0035 10035 - - - 289 496 226 226 226 178 - - - 215 352 178 178 127 1.27	Additional Reach Parameters																			
- - 289 496 226 226 - - - 215 352 178 178 - - - 1.35 1.41 1.27 1.27 - - - - n/a C4/1 C4/1 C4/1	Bankfull Slope (ft/ft)									0.0069			0.0199			0.0035			0.0080	
- - 215 352 178 - - 1.35 1.41 1.27 - - n/a C4/1 C4/1	Channel Length(ft)		1				1			289			496			226			231	
1.35 1.41 1.27 n/a C4/1 C4/1 0	Valley Length (ft)						1			215			352			178			178	
n/a C4/1 C4/1	Sinuosity				+					1.35			1.41			1.27			1.30	
	Rosgen Classification				┥		1			n/a			C4/1			C4/1			C4/1	

			Exhibit 7 Tribu		le VII. y to R	cont.] eedy F	Baselir ork Cl Reach	ie Mor reek St R2-4b	aseline Morphology rk Creek Stream R Reach R2-4b (307 ft)	ibit Table VII. cont. Baseline Morphology and Hydraulic Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R2-4b (307 ft)	Hydrau tion / I	llic Sur 06028	nmary -A						
PARAMETERS	ñ	SGS Ga	USGS Gage Data	R	sgional (Regional Curve Interval	terval	Pre-Exis	Pre-Existing Condition		Project R	Project Reference Stream	Stream		Design			As-built	
Dimension - Riffle	Min	Max	x Med		LL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)	1	-					;		1	1	6.2	8.6	7.2	1	1	7.1		1	10.4
Floodprone Width (ft)	ł	-				1	-	:	1	1	15.3	25.0	20.5	13.6	28.6	20.9		1	44.4
BKF Cross Sectional Area (sq. ft.)	1	-				1	-		1	1	3.9	6.3	5.4	1	1	4.0	1	1	7.7
BKF Mean Depth (ft)	ł		-			:	1		:	!	0.56	1.02	0.79	1	1	0.57	1	1	0.74
BKF Max Depth (ft)	1	-					1	1	;	1	0.64	1.38	1.02	0.46	0.99	0.73	1	1	1.45
Width/Depth Ratio	1	1					1	1	1	1	6.1	12.6	9.1	1	ł	12.5	1	1	14.0
Entrenchment Ratio	1		1				:	1	1	1	1.9	4.1	3.0	1.9	4.1	3.0	!	:	4.3
Wetted Perimeter (ft)	ł	ł				:	;	-	1	1	1	1	1	1	1	1	1	;	11.1
Hydraulic Radius (ft)	1						-	I	1	1	:	1	1	1	T	:	-	1	0.70
Pattern	Min	Max	\square	Med	Π	Π	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	1	1	_	-	-	-	-		-	ł	10.0	35.0	20.9	9.9	34.6	20.7	3.3	29.8	12.6
Radius of Curvature (ft)	1	1	-	+		;	1	-	1	1	2.3	31.8	13.5	2.3	31.5	13.4	11.9	29.5	16.4
Meander Wavelength (ft)	1		_	-	-	1	;	1	ł	ı	35.0	70.0	50.0	34.6	69.3	49.5	40.5	55.6	47.7
Meander Width Ratio	1	1	_			:	;	ł	ł	1	1.4	4.9	2.9	1.4	4.9	2.9	0.3	2.9	1.2
Profile	Min	Max	_	Med	rr	Π	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)	1				1	-	-	;	;	1	2.5	25.4	13.8	2.5	25.2	13.6	4.4	5.2	4.8
Riffle Slope (ft/ft)	1	-	-		1	;	1	ł	ł	I	0.016	0.085	0.040	0.006	0.031	0.014	0.009	0.046	0.032
Pool Length (ft)	1		_		-	;	1	1	I	I	7.3	27.5	14.6	7.2	27.2	14.5	9.6	18.3	12.6
Pool Spacing (ft)	1		_	_		;	:	1	1	:	16.5	62.8	36.5	16.4	62.2	26.1	24.4	41.6	31.2
Substrate																			
d50 (mm)		. 1				1			0.2			6.2			0.2			5.7	
d84 (mm)		1				ŧ			6.1			72.7			6.1			15.4	
Additional Reach Parameters				Н															
Bankfull Slope (ft/ft)		1							0.0155			0.0199			0.0155			0.0178	
Channel Length(ft)						1			226			496			334			307	
Valley Length (ft)		1				;			213			352			267			267	
Sinuosity		1				1			1.06			1.41			1.25			1.15	
Rosgen Classification				\neg		Ŧ			n/a			C4/1			C4/1			C4/1	

		E	Exhibit T Tribu	able V Itary to	II. cont Reedy	Table VII. cont. Baseline Morphology and Hydraulic Summary utary to Reedy Fork Creek Stream Restoration / D06028-A Reach R2-4c (208 ft)	ne Mo Jreek S 3h R2-4	aseline Morpholog rk Creek Stream F Reach R2-4c (208 ft)	gy and Restors	Hydrai ation /]	ulic Sur D06028	nmary -A						
PARAMETERS	USC	USGS Gage Data	Data	Region	Regional Curve Interval	Interval	Pre-Exi	Pre-Existing Condition	ndition	Project F	Project Reference Stream	Stream		Design			As-built	
Dimension - Riffle	Min	Max	Med	TL	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BKF Width (ft)	ł	1	1	;	1	-	1	;	-	6.2	8.6	7.2	-	:	7.1	-	•	8.7
Floodprone Width (ft)	1	1	1	1	1	1	I	ł	-	15.3	25.0	20.5	13.6	28.6	20.9	1	1	42.6
BKF Cross Sectional Area (sq. ft.)	1	1	1	ł	1	1	1	ł	1	3.9	6.3	5.4	-	:	4.0	1	1	6.0
BKF Mean Depth (ft)	1	1	1	1	1	I	I	ł	1	0.56	1.02	0.79	1	;	0.57	1	1	0.68
BKF Max Depth (ft)	ł	;	1	1	1	1	ł	I	1	0.64	1.38	1.02	0.46	0.99	0.73	1	1	1.23
Width/Depth Ratio	1	I.	1	1	1	ł	1	1	-	6.1	12.6	9.1	1	1	12.5	1	1	12.9
Entrenchment Ratio	1	1	1	1	1	1	1	ł	I	1.9	4.1	3.0	1.9	4.1	3.0	1		4.9
Wetted Perimeter (ft)	1	1	1	1	-	I	ł	I	;	I	1	1	I	1	1	1	1	9.3
Hydraulic Radius (ft)	1	1	-	1	1	1	ł	ł	1	1	!	I	1	;	1	1	:	0.65
Pattern	Min	Мах	Med	TT	UL	Eq	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	1	1	1	1	1	1	I	I	1	10.0	35.0	20.9	9.9	34.6	20.7	5.7	18.2	11.6
Radius of Curvature (ft)	ł	1	ł	1	ł	1	1	ł	ł	2.3	31.8	13.5	2.3	31.5	13.4	14.0	21.8	16.6
Meander Wavelength (ft)	ł	1	1	1	1	I	ł	1	1	35.0	70.0	50.0	34.6	69.3	49.5	46.0	57.4	50.8
Meander Width Ratio	1	1	;	1	1	-	1	ł	I	1.4	4.9	2.9	1.4	4.9	2.9	0.7	2.1	1.3
Profile	Min	Мах	Med	LL	NL	Eq	Min	Мах	Med	Min	Мах	Med	Min	Max	Med	Min	Max	Med
Riffle Length (ft)	:	1	;	1	1	I	1	1	1	2.5	25.4	13.8	2.5	25.2	13.6	4.7	5.5	5.2
Riffle Slope (ft/ft)	1	1	1	1	1	ł	1	1	1	0.016	0.085	0.040	0.006	0.031	0.014	0.008	0.040	0.028
Pool Length (ft)	I	1	1	1	;	1	1	1	1	7.3	27.5	14.6	7.2	27.2	14.5	6.5	14.7	9.9
Pool Spacing (ft)	;	;	+	;	-	:	I	1	1	16.5	62.8	36.5	16.4	62.2	26.1	26.9	38.9	34.7
Substrate																		
d50 (mm)		ł			ľ			0.2			6.2			0.2			4.0	
d84 (mm)		ł			1			6.1			72.7			6.1			9.7	
Additional Reach Parameters																		
Bankfull Slope (ft/ft)		1			ł			0.0144			0.0199			0.0048			0.0075	
Channel Length(ft)		1			1			157			496			232			208	
Valley Length (ft)					1			148			352			187			187	
Sinuosity		1			1			1.07			1.41			1.24			1.11	
Rosgen Classification		ł			ł			n/a			C4/1			C4/1			C4/1	

					Exhibit Tribu	Table VII itary to R	Exhibit Table VIII. Morphology and Hydraulic Monitoring Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R1 (1,632 ft)	bhology and Hydrau ork Creek Stream R Reach R1 (1,632 ft)	Hydrau ream Re .632 ft)	lic Monit storation	oring Sun 1 / D06028	imary -A									
PARAMETERS	Cross	Cross Section 7 Pool								╞				L							
Dimension	MY1 MY2 N	MY3 MY4	MY5 M	MY1 MY2	MY3	MY4 MY5	1,XM	MY2 MY3	MY4	MY5 MY1	CVM.	MV3 M	MV4 MV5	MVI	ALCVM	MV2 MVA	A MVE		LIVIN .		
BKF Width (ft)	7.8 8.7	8.8 8.9										-		1 1 1	_	-	_	_	7 I W	M X 3	MY4 MY3
Floodprone Width (ft)	78.0 76.7 7	77.5 73.7		_				-					-		┢	╞	-		Ī	t	+
BKF Cross Sectional Area (sq. ft.)	5.3 5.0	5.2 4.4						-				╞			┢	╞	\downarrow	ļ	T		+
BKF Mean Depth (ft)	0.69 0.58 0	0.58 0.50						_				┝	╞		╞	+	1	Ļ	T	\uparrow	+
BKF Max Depth (ft)	1.57 1.52 1	1.55 1.44											╞		┢	$\left \right $	-			t	+
Width: Depth Ratio	11.2 14.9 1	15.2 17.8							L					Ĺ	┢					╞	+
Entrenchment Ratio	10.1 8.9	8.8 8.3										╞	Ļ		+	+		ļ	t	+	+
Wetted Perimeter (ft)	8.6 9.4	9.5 9.7										╞	Ļ		╎	$\left \right $			T	t	
Hydraulic Radius (ft)	0.62 0.53 0	0.54 0.46										╞			┢		_		1	┢	╀
																				1	
PARAMETERS	M	MY-01 (2008)				MY-02 (2009)		ŀ		MY-03 (2010)	6	┝		MY-04 (2011)	(110		L		MV-05 (2012)	(2012)	
Pattern	Min	Max	Med		Min	Max	Med	Ĺ	Min	Max	Med		Min	Max	┢	Med	┡	Min	Max		Mad
Channel Beltwidth (ft)	6.1	24.8	11.5		3.3	24.2	9.9	_	5.0	24.4	10.4		3.8	23.9		9.5					
Radius of Curvature (ft)	7.2	20.8	11.8		6.8	19.8	12.7		8.0	19.0	13.1		7.8	15.3		11.9				t	
Meander Wavelength (ft)	28.4	50.1	38.8		31.4	49.7	39.1	2	26.0	51.4	38.9		31.9	. 50.2		39.0				┢	
Meander Width Ratio	1	1	1	_	;	;	1		1	1	1			1	F	1				╞	
Profile	Min	Max	Med		Min	Max	Med	4	Min	Max	Med		Min	Max	t	Med		Min	Max		Med
Riffle Length (ft)	1.4	6.0	4.1		6.9	16.5	10.4		4.7	11.7	8.8		6.3	13.8	\vdash	8.6					
Riffle Slope (ft/ft)	0.019	0.177	0.063	0	0.030	0.070	0.054	0	0.011	0.106	0.040		0.014	0.052		0.038				\vdash	
Pool Length (ft)	7.0	13.9	10.7		6.8	8.9	8.0	-	6.3	15.3	11.4		7.1	10.6		8.6					
Pool Spacing (ft)	23.2	68.8	37.1	~	21.7	41.5	31.5		16.8	50.9	32.4		17.5	40.7	-	29.9					
Substrate																					ł
d50 (mm)		0.04		\downarrow		0.04				3.83		_		0.05							
d84 (mm)		4.00				0.06		_		9.41		_		0.86							
Additional Reach Parameters									·			╞								ł	
Bankfull Stope (ft/ft)		0.0196				0.0196				0.0192				0.0197							
Monitored Channel Length (ft)		627				602				611				617							
Monitored Valley Length (ft)		499				493				499				499							
Sinuosity		1.26				1.22				1.22				1.24							
Total Channel Length (ft)		1632				1632				1632				1632						ĺ	
Rosgen Classification		C6				C6				5				°C			Ļ				

						Exh	ibit Tal Pributa	ole VIII ry to R	. Morj redy Fa	phology ork Cre	phology and Hydrau ork Creek Stream Re Boach B?-2 (7 544 ft)	Exhibit Table VIII. Morphology and Hydraulic Monitoring Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Booch P2-2 (7 544 64)	Monit oration	oring S / D06(iummar 128-A	×										—
PARAMETERS	No C	No Cross Section	tion	\vdash					<u> </u>		(a) (a)		\vdash				\vdash									
Dimension	MY1 MY2	MY3	MY4	MY5 N	MY1 N	MY2 M	MY3 MY4	4 MY5	I MYI	MY2	MY3 1	MY4 MS	MY5 MY1	1 MY2	MY3	MY4 1	MY5 M	MY1 MY2	Y2 MY3	3 MY4	MY5	MY1	MY2	MY3	MY4 N	MY5
BKF Width (ft)	-	1	I									-								_						
Floodprone Width (ft)		1	1					_				\vdash														
BKF Cross Sectional Area (sq. ft.)		1	1										_													
BKF Mean Depth (ft)	-	1	1																							
BKF Max Depth (ft)	-	1	1		\vdash																L				-	
Width/Depth Ratio		;	1									-														
Entrenchment Ratio	-	1	1															-								
Wetted Perimeter (ft)	:	;	:											\square				\square								
Hydraulic Radius (ft)		;	1	-		-	_					_													Η	
PARAMETERS		MY-01 (2008)	(2008)		Η		ΥM	MY-02 (2009)	()			ŚW	MY-03 (2010)	6			M	MY-04 (2011)	(11)				MY-05 (2012)	(2012)		
Pattern	Min	Max	ж	Med		Min		Max		Med	Min		Max		Med	Min		Max		Med	Ĩ.	Mîn	Max	×	Med	
Channel Beltwidth (ft)	6.6	64.4	4.	36.4	Η	3.8		67.8	4	40.5	4.6	-	72.6		42.0	2.2		70.5		40.2						
Radius of Curvature (ft)	23.6	42.6	.6	30.1		24.1		55.9	e)	36.0	25.8		36.0		32.4	28.8		44.0		35.6						
Meander Wavelength (ft)	81.3	102	102.4	90.8		80.2	-	152.5	-	110.0	84.8		157.8		111.3	86.3		155.5		110.9						
Meander Width Ratio	1	í	-	1	┥	1	_	1		1	1	-	1		1	1	_	ł	_							
Profile	Min	Max	ax	Med		Min		Max	~	Med	Min		Max		Med	Min		Max		Med		Min	Max	X	Med	_
Riffle Length (ft)	5.4	14.6	9	9.6		10.8		22.9		17.8	9.9	-	22.3		16.7	20.1	_	22.5		21.4						
Riffle Slope (ft/ft)	0.009	0.066	99	0.029	<u>_</u>	0.018		0.046	Ö	0.028	0.009	_	0.025	-	0.016	0.002	10	0.034		0.027						
Pool Length (ft)	16.5	60.3	5	29.7		13.6		60.9	.4	29.2	17.4		55.6		32.3	17.1		22.0	-	19.9						
Pool Spacing (ft)	21.4	66	99.2	55.7	-	89.1	_	117.2	_	101.0	59.5	_	105.3		81.1	25.9	_	78.7	_	57.7						
Substrate																					_					
d50 (mm)		0.(0.06					0.04					4.65					4.00								
d84 (mm)		6.4	6.47					1.00					12.58					12.22								
Additional Reach Parameters																					L					Γ
Bankfull Slope (ft/ft)		0.0	0.0108					0.0112					0.0111					0.0104								
Monitored Channel Length (ft)		47	476					442					466					447								
Monitored Valley Length (ft)		35	356					329					356					356								
Sinuosity		1.	1.34					1.35					1.31					1.26								
Total Channel Length (ft)		25	2544					2544					2544					2544								
Rosgen Classification		0	C6					C6		1			C4					C4								

							Ţ	ributary	y to Re	edy Fo R	rk Cre each R	ork Creek Stream Reach R2-3 (1,771	Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R2-3 (1,771 ft)	toratio	n / D06	Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R2-3 (1,771 ft)											
PARAMETERS		Cross Section 3 Pool	Section Pool	m			Cross Section 4 Riffle	ction 4 le			Cros	Cross Section 5 Riffie	S	\vdash	ľ	Cross Section 6 Pool	tion 6										
Dimension	IYM	MY2 M	MY3 N	MY4 M	MY5 MY1	YI MY2	72 MY3	3 MY4	MY5	MY1	MY2	MY3 N	MY4 M	MY5 MY1	ri MY2	F	MY4	MY5 N	M IYM	MY2 M	MY3 MY4	4 MY5	5 MY1	I MY2	MY3	MY4	MYS
BKF Width (ft)	10.1	11.75 11.	11.57 I	11.58	10.8	.8 10.77	77 11.0	0 11.34		9.95	10.41	10.9 1	12.61	10.87	87 12.0	0 10.89	10.61		╞	\vdash			_	-			
Floodprone Width (ft)	71.78	64.05 65	65.0 6	67.38	60.3	.3 62.5	.5 76.0	0 77.6		76.64	75.66	79.7 7	77.74	92.8	.8 100.0				\vdash								Τ
BKF Cross Sectional Area (sq. ft.)	10.0	8.6 8.	8.1	7.5	6.2	2 5.1	1 6.7	6.1		6.3	5.4	6.0	5.7	10.05	05 10.35	35 10.84	9.6		\vdash							ſ	
BKF Mcan Depth (ft)	0.99	0.73 0.	0.70 0	0.65	0.57	57 0.47	09.0	0 0.53	L	0.63	0.52	0.55 0	045	0.92	2 0.86	6 1.00			╞							T	Γ
BKF Max Depth (ft)	1.82	1.62 1.	1.67 1	1.77	1.07	07 1.18	8 1.24	4 1.28		1.10	0.99	1.3	1.05	1.89		9 2.26	2.08	╞	$\left \right $								Γ
Width/Depth Ratio	10.2	16.1 16.	16.53 1	17.82	19.0	.0 22.9	.9 18.33	3 21.4		15.79	20.0	19.82	28.0	11.82	82 13.93	93 10.89) 11.66		╞	╞						Γ	Γ
Entrenchment Ratio	7.1	5.5 5.	5.6	5.8	5.6	6 5.8	8 6.9	6.8		7.7	7.3	7.3	6.2	8.5	5 8.4	4 9.2	9.4					-				Γ	
		12.6 12.	12.19 1	13.0	11.2	.2 11.5	.5 11.5	5 12.0		10.38	10.7	11.39 1	12.89	11.7	.7 13.5	5 12.0	11.6				\vdash	L.				Γ	
Hydraulic Radius (ft)	0.90	0.68 0.0	0.66 0	0.58	0.55	55 0.45	15 0.58	8 0.50		0.61	0.50	0.53 (0.44	0.86	36 0.77	7 0.91	0.83					_				Γ	
																										1	1
PARAMETERS		ω	MY-01 (2008)	(800		Н		MY-0	MY-02 (2009)				SM	MY-03 (2010)	(0		L	ž	MY-04 (2011)	(110		L		MY-0	MY-05 (2012)		Γ
Pattern	Min	_	Max		Med		Min	~	Max	W	Med	Min		Мах		Med	Min		Max		Med		Min	ľ	Max	Med	Ţ
Channel Behwidth (ft)	3.4		43.2		25.2		1.8	4	40.6	23	23.4	2.2		38.6		22.2	4.0		58.3		23.8						
Radius of Curvature (ft)	14.3		37.2		22.7		14.0	4	41.5	24	24.3	14.5		40.5		24.8	13.8		45.1		24.4						
Meander Wavelength (ft)		_	98.0	+	79.8		55.1	~	98.6	75	79.7	56.2		99,4		79.8	57.7	7	98.3		80.4						
Meander Width Ratio	0.3		4.2	┨	2.4	4	0.2		3.8	6	2.2	0.2	-	3.5	_	2.0	0.3		4.9		2.0						
Profile	Min	E	Max		Med		Min	P ^{CC1}	Мах	M	Med	Min		Max		Med	Min	,u	Max	╞	Med		Min	2	Мах	Med	L.
Riffle Length (ft)			16.5	-	10.0		7.9	.4	21.3	13	13.3	9.0	_	22.1		15.4	10.0	0	31.4		18.3						
Riffle Slope (ft/ft)	-	6	0.056	+	0.021		0.011	0	0.041	0.0	0.023	0.004		0.022		0.011	0.008	38	160.0	\vdash	0.026						
Pool Length (ft)		2	30.4	+	19.7	+	9.2		35.2	18	18.7	8.7		25.8		19.8	15.5	5	33.1	\vdash	24.9						
Pool Spacing (ft)	24.3		95.9	-	56.6		17.1	~	82.3	SL	50.9	36.2	_	94.0	_	63.4	28.5	5	82.1	-	47.5						
Substrate																											Γ
d50 (mm)			0.06					J	0.04					4.65					4.00								Γ
d84 (mm)			6.47			_		1	1.00					12.58					12.22								Γ
Additional Reach Parameters																											Γ
Bankfull Slope (ft/ft)			0.0076	5				0.	0.0077					0.0080					0.0075	-	ĺ						Γ
Monitored Channel Length (ft)			1608					-	1629					1583					1620								Γ
Monitored Valley Length (ft)			1305					-	1301					1305					1305								
Sinuosity			1.23						1.25					1.21					1.24								
Total Channel Length (ft)			1771					-	1771					1771					1771								
Rosgen Classification			පී			_			C6		-			C4					C4								

						-	Tri	t Table butary	to Ree	Exhibit 1 able VIII. Morphology and Hydraulic Monitoring Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach R2-4a (231 ft)	phology and Hydrau ork Creek Stream Re Reach R2-4a (231 ft)	nd Hy Strea 4a (23	iraulic n Resto 1 ft)	Monito ration	ring S(D060:	ammar 28-A	×										
PARAMETERS		No Cross Section	Section																				<u> </u>				
Dimension	MY1 M	MY2 MY3	3 MY4	4 MY5	5 MY1	MY2	MY3	MY4	MY5	MY1 N	MY2 M	MY3 M	MY4 MY5	S MYI	MY2	MY3	MY4 1	MYS M	MYI M	MY2 MY3	Y3 MY4	4 MY5	5 MYI	1 MY2	EYM 2	MY4	MY5
BKF Width (ft)	1	-	1																								
Floodprone Width (ft)	:	1	;			Ц					\mid																
BKF Cross Sectional Area (sq. ft.)	•																			_	L						
BKF Mean Depth (ft)	;	1	1																Ļ.		_						
BKF Max Depth (ft)	\$;	1									-							-	-							
Width/Depth Ratio	1	1	1																								
Entrenchment Ratio	;	1	-	Ц																		\mid					
Wetted Perimeter (ft)	-	 	-																							L	
Hydraulic Radius (ft)	-	-	1																	L							
PARAMETERS		-YM	MY-01 (2008)	8)				MY-0.	MY-02 (2009)		\vdash		-YM	MY-03 (2010)				W	MY-04 (2011)	(11)		-)-YM	MY-05 (2012)		
Pattern	Min		Max	Ц	Med		Min	Ň	Max	Med		Min		Max	Ň	Med	Min	H	Мах	Н	Med		Min		Max		Med
Channel Beltwidth (ft)	10.1		21.6		14.8		9.3	6	22.1	15.3		8.3		21.4		14.5	10.6		22.5	Н	16.2						
Radius of Curvature (ft)	15.1	_	35.4		21.6	-	14.5	7	27.4	19.8		13.7	_	28.0	Ň	20.7	13.8	~~	26.5		18.4						
Meander Wavelength (ft)	58.9	_	66.4		62.2		59.3	9	67.0	63.8		60.9		65.7	Ŷ	63.9	59.6		70.8		64.6						
Meander Width Ratio	1	-	ł		ł		:		;	:		1	-	1		1	1		I	-	1						
Profile	Min		Max		Med	Ĭ	Min	N	Max	Med	_	Min		Мах	Z	Med	Min		Мах	Η	Med		Min		Max	4	Med
Riffle Length (ft)	6.1		8.8	_	7.4		7.4	-	11.9	9.3		6.4		7.8		7.2	8.00		9.55	_	8.58						
Riffle Slope (ft/ft)	Ũ	-	0.033		0.016			ź	No water		┥	0.007		0.016	Ö	0.011	0.007	-	0.032		0.018						
Pool Length (ft)		-	18.0		16.1		9.1	-	19.3	14.2		8.76		17.09	-	13.8	13.1		20.7		16.6						
Pool Spacing (ft)	25.1	_	54.8	_	78.3		24.7	4	42.5	34.4	_	30.0		44.8	6	37.4	36.5	~	44.2	-	40.2			_			
Substrate																											
d50 (mm)			0.04					0	0.03					0.09					0.08								
d84 (mm)			0.25					0	0.06					3.43					4.34								
Additional Reach Parameters																											
Bankfull Slope (ft/ft)		5	0.0074					0.(0.0078				-	0.0085					0.0088								
Monitored Channel Length (ft)			169					14	205					173					182								
Monitored Valley Length (ft)			147						174					147					154								
Sinuosity			1.15						1.18					1.18					1.18								
Total Channel Length (ft)			231					13	231					231					231			_					
Rosgen Classification			C6			_		-	C6					cs					S			_					

		1 MV2 MV3 MVA MV5										MY-05 (2012)	Max	╞				Max Med														
	\vdash	MV5 MV1	-			+				H			Min					Min														
		MY4										ŀ	Med	9.4	16.5	51.2	0.7	Med	6.43	0.054	13.4	28.6	t		F	ſ						
		MY2 MY3	-	╞			╞		╞			(11)	L				_		-													
		MY1 M	+	┢	╞		\vdash	╞	╞			MY-04 (2011)	Max	15.5	18.5	55.4	1.2	Max	7.83	0.088	15.0	36.1		0.17	3.81		0.0163	118	103	1.15	307	C4
	F	MYS						Ĺ					Min	2.5	13.6	47.0	0.2	Min	5.03	0.019	10.1	21.8	-									
A		MY3 MY4			$\left \right $	╞	╞	╞	\vdash			┝	┡										L			L						
Tributary to Reedy Fork Creek Stream Restoration / D06028-A Reach 72-4b (307 ft)		MY2 M	╞	\vdash	┢	╞	┢	$\left \right $					Med	8.8	15.4	50.1	0.9	Med	7.68	0.025	9.5	38.5										
ation / I		IXW										MY-03 (2010)	Max	13.0	17.4	54.2	1.4	Max	8.17	0.027	14.6	38.9		2.41	9.10		0.0154	116	103	1.13	307	C4
Restor ft)		4 MY5										MY-03	Σ	1	1	\$	1	M	8	0.0	17	38		5	.6		0.0		10	Τ.	3(
Stream 4b (307		MY3 MY4			-								Min	1.6	13.2	45.0	0.2	Min	7.18	0.022	6.2	38.1										
ork Creek Stream Reach R2-4b (307 ft)		MY2 M		╞		\vdash		╞	╞			┝				-			_	-			┝			┝						
dy Forl Re		WY1 N			┢		┢				1	ļ	Med	8.4	18.1	49.5	0.9	Med	7.6	0.017	9.76	61.9										
to Ree		MY5										MY-02 (2009)	Max	12.1	21.6	55.8	1.3	Max	10.44	0.027	12.99	44.75		0.50	10.66		0.0145	152	134	1.13	307	C5
ributar		3 MY4										0-YM	Ĩ				_	-	~	0		4		U	1		0					
Ē.		MY2 MY3				╞							Min	6.3	16.0	43.1	0.7	Min	3.06	0.011	<i>TT.T</i>	24.71										
		MY1 N			-	-	-					┢	p	61	4			Ţ	-	S	9	82			_							
		MY5											Med	13.2	20.4	51.3	1.4	Med	9:9	0.025	9.16	33.48										
	ction l e	3 MY4	3 13.0	9 40.0	3.1	1 0.24	2 0.54	6 54.0	3.1	5 13.1 0 0.24		MY-01 (2008)	Max	17.1	39.3	56.5	1.8	Max	12.0	0.048	13.29	40.72		0.70	7.11		0.0212	119	104	1.15	307	8
	Cross Section 1 Riffle	MY2 MY3	9.31 9.33	38.0 40.09	4.2 3.8	0.45 0.41	0.89 0.82	20.69 22.76	.1 4.3	9.8 9.5 0.43 0.40	- I	-YM				-	_					-					0					
		MYI M	9.38 9.	37.18 38	4.5 4.	0.48 0.4	0.84 0.8	19.54 20.	4.0 4.1	9.7 9. 0.47 0.	4		Min	8.4	13.2	46.1	0.0	Min	4.0	0.004	5.03	23.92										
	PARAMETERS	Dimension	BKF Width (ft)	Floodprone Width (ft) 3	BKF Cross Sectional Area (sq. ft.)		BKF Max Depth (ft)	Width/Depth Ratio	Entrenchment Ratio	Wetted Perimeter (ft) Hydraulic Radius (ft)		PARAMETERS		Channel Beltwidth (ft)	Radius of Curvature (ft)	Meander Wavelength (ft)	Meander Width Ratio		Riffle Length (ft)	Riffle Slope (ft/ft)	Pool Length (ft)	Pool Spacing (ft)	Substrate	d50 (mm)	d84 (mm)	Additional Reach Parameters	Bankfull Slope (ft/ft)	Monitored Channel Length (ft)	Monitored Valley Length (ft)	Sinuosity	Total Channel Length (ft)	Rosgen Classification

						Ð	thibit T Tribut	able VI ary to	II. Mc Reedy	rpholog Fork Cr Beach	phology and Hydrau ork Creek Stream Re Beach B2-46 (708 ft)	Hydraul eam Re	Exhibit Table VIII. Morphology and Hydraulic Monitoring Summary Tributary to Reedy Fork Creek Stream Restoration / D06028-A Description 27-46-708 fty	toring	Summar 028-A	y									
PARAMETERS		Cross Section 2 Riffle	ction 2 le														\vdash								
Dimension	MY1 M	MY2 MY3	3 MY4	MY5	IXW	MY2	MY3 N	MY4 M	MY5 MY1	(I MY2	MY3	MY4 N	MY5 MY1	1 MY2	2 MY3	MY4 1	MY5 M	MY1 MY2	72 MY3	3 MY4	MY5	IYM	MY2 1	MY3 N	MY4 MY5
BKF Width (ft)	8.06	8.82 8.6	8.65 8.59	6																			_		
Floodprone Width (ft) 42.63		39.55 32	32.2 37.29	ć																					
BKF Cross Sectional Area (sq. ft.)	6.0	5.5 2	2.7 2.6	5													┝								
BKF Mean Depth (ft)	0.74	0.62 0.3	0.31 0.30	0					_															\vdash	\vdash
BKF Max Depth (ft)	1.26	1.06 0.6	0.62 0.83	3																					
Width/Depth Ratio	10.89	14.23 27	27.9 28.63																				╞	-	┝
Entrenchment Ratio	5.3	4.5 3	3.7 4.3																					-	
Wetted Perimeter (ft)	8.6	9.2 8	8.9 8.9	6								-												\vdash	
Hydraulic Radius (ft)	0.69	0.60 0.3	0.30 0.29	6				_										_							
PARAMETERS		MY	MY-01 (2008)				N	MY-02 (2009)	(60)			N	MY-03 (2010)	(0			М	MY-04 (2011)	(1)		L		MY-05 (2012)	2012)	
Pattern	Min		Max	4	Med	Min		Max		Med	M	Min	Max		Med	Min		Max	L	Med	Ā	Min	Max	_	Med
Channel Beltwidth (ft)	5.3		17.3	-	13.1	3.7	-	16.0		11.5	15	15.7	15.9	_	15.8	16.6		17.0		16.8					
Radius of Curvature (ft)	14.9		24.5	-	18.3	10.8		25.0		17.3	13	13.8	17.4		15.5	13.3		15.1		14.2					
Meander Wavelength (ft)	48.7	_	58.1	Ś	53.4	47.2	5	56.0	_	51.6	56	56.3	56.3		56.3	55.7		55.7		55.7					
Meander Width Ratio	0.7	_	2.1		1.6	0.4	4	1.8	-	1.3	-	1.8	1.8	_	1.8	1.9	-	2.0		2.0				_	
Profile	Min		Мах		Med	Min	Ē	Max		Med	M	Min	Max		Med	Min		Max		Med	2	Min	Max	_	Med
Riffle Length (ft)	5.9		8.1		7.3	7.4	4	11.7	-	9.5	4	4.5	8.1		6.3	5.6		6.3		5.9					
Riffle Slope (ft/ft)	0.004	-	0.009	Ö	0.006	0.001	10	0.022	+	0.012	0.0	0.008	0.013	_	0.018	0.015	2	0.025		0.021	_				
Pool Length (ft)		_	13.0	-	12.4	11.8	8	14.9	-	13.4	1	11.7	11.7	_	11.7	13.9		17.2		15.9		1			
Pool Spacing (ft)	30.8	_	40.6	m)	36.6	47.2	7	47.8	-	47.5	30	30.8	45.6	_	38.2	29.0	_	31.1	_	30.1					
Substrate																									
d50 (mm)			0.04					0.05					0.03					0.03							
d84 (mm)			1.00					0.06					0.05					0.05							
Additional Reach Parameters																									
Bankfull Slope (ft/ft)			0.005					0.005					0.006					0.008							
Monitored Channel Length (ft)			117					107					100		_			120							
Monitored Valley Length (ft)			101					93					80		-			100							
Sinuosity			1.15					1.15					1.25					1.20							
Total Channel Length (ft)			208					208					208					208							
Rosgen Classification			C6		,			ő					C6					C6			_				

		Exhibit	Tabl	e IX.	BEH	I and	Sedin	ient E	xport	t Estir	nates				
		Tributary	to Ree	edy Fo	ork C	reek S	Strear	n Res	torati	on / D	06028	3-A			
Time Point	Segment / Reach ¹	Linear Footage or Acreage	Exti		-	High		igh		erate		DW		Low	Sediment Export
	1		ft	%	ft	%	ft	%	ft	%	ft	%	ft	%	Tons/yr
	R1	1409	1409	100					<u> </u>				——		126.8
	R2-1	906	906	100			<u> </u>				<u> </u>				81.5
	R2-2	2522	2522	100							<u> </u>				126.1
Preconstruction	R2-3	1584	1584	100	<u> </u>		<u> </u>								110.9
2006	R2-4a	289						<u> </u>	<u> </u>						n/a
	R2-4b	226													n/a
	R2-4c	157													n/a
	TOTAL	7092	6420	91	0	0	0	0	0	0	0	0	0	0	445
	R1	1632							L		1632	100			2.4
	R2-1	819			<u> </u>						819	100			3.0
	R2-2	2544									2544	100			9.2
Monitoring Y3	R2-3	1771									1771	100			7.7
2010	R2-4a	231									231	100			0.4
	R2-4b	307									307	100			1.6
	R2-4c	208									208	100			2.3
	TOTAL	7512	0	0	0	0	0	0	0	0	7512	100	0	0	26.6
	R1	1632													
	R2-1	819													
Monitoring V5	R2-2	2544													
Monitoring Y5 2012 (NOT	R2-3	1771													
APPLICABLE)	R2-4a	231													
	R2-4b	307													
	R2-4c	208													
	TOTAL	7512	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ BEHI and Sediment Export estimates were not conducted for reaches R2-4a, R2-4b, and R2-4c before Construction as they did not exist.

1		rification of Bankfull Events eek Stream Restoration / D0	
Date of Data Collection	Date of Occurrence	Method	Photo No. (If Available)
9/22/08-9/24/08	Unknown	Crest Guages	N/A
9/9/2009	Unknown	Crest Guages	N/A
9/28/2010	Unknown	Crest Guages	N/A
·	Year 4 was not measured as the	Project already exceeded require	ments

E

17	vhihit Tabla b	1 Catarat	Cincom To		Lilia. A	
E		0		m Restoration	bility Assessn	ient
	Inducary		Reach R1 (1,632		17 D00020-A	
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	
Pools	100%	100%	100%	100%	100%	
Thalwegs	100%	100%	100%	100%	100%	
Meanders	100%	100%	100%	100%	100%	
Bed General	100%	100%	100%	100%	100%	
Structures	100%	100%	100%	100%	100%	
Rootwads	100%	100%	100% Reach R2-1 (819	100%	100%	1
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	M11-05
Pools	100%	100%	100%	100%	100%	
Thalwegs	100%	100%	100%	100%	100%	
Meanders	100%	100%	100%	100%	100%	
Bed General	100%	100%	100%	100%	100%	
Structures	100%	100%	100%	100%	100%	
Rootwads	100%	100%	100%	100%	100%	
		R	each R2-2 (2,54	4 ft)		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	ļ
Pools	100%	100%	100%	100%	100%	
Thalwegs	100%	100%	100%	100%	100%	
Meanders	100%	100%	100%	100%	100%	
Bed General Structures	100%	100%	100%	100%	100%	
Rootwads	100%	100%	100%	100%	100%	
Rootwads	10076	1	ach R2-3 (1,77	1	100%	
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	N11-03
Pools	100%	100%	100%	100%	100%	
Thalwegs	100%	100%	100%	100%	100%	
Meanders	100%	100%	100%	100%	100%	1
Bed General	100%	100%	100%	100%	100%	
Structures	100%	100%	100%	100%	100%	
Rootwads	100%	100%	100%	100%	100%	
			each R2-4a (231			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	<u> </u>
Pools	100%	100%	100%	100%	100%	
Thalwegs Meanders	100%	100%	100% 100%	100%	100% 100%	
Bed General	100%	100%	100%	100%	100%	
Structures	100%	100%	100%	100%	100%	
Rootwads	100%	100%	100%	100%	100%	
		Re	ach R2-4b (307	1		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	
Pools	100%	100%	100%	100%	100%	
Thalwegs	100%	100%	100%	100%	100%	
	100%	100%	100%	100%	100%	
Meanders	1000/	100%	100%	100%	100%	
Bed General	100%		100%	100%	100%	
Bed General Structures	100%	100%			100%	
Bed General		100%	100%	100%	100%	L <u>.</u>
Bed General Structures Rootwads	100% 100%	100% Re	ach R2-4c (208	ft)		
Bed General Structures Rootwads Feature	100% 100% Initial	100% Re MY-01	each R2-4c (208 MY-02	ft) MY-03	MY-04	MY-05
Bed General Structures Rootwads Feature Riffles	100% 100% Initial 100%	100% Re MY-01 100%	each R2-4c (208 MY-02 100%	ft) MY-03 100%	MY-04 100%	MY-05
Bed General Structures Rootwads Feature Riffles Pools	100% 100% Initial 100% 100%	100% Ra MY-01 100% 100%	each R2-4c (208 MY-02 100% 100%	ft) MY-03 100% 100%	MY-04 100% 100%	MY-05
Bed General Structures Rootwads Feature Riffles Pools Fhalwegs	100% 100% Initial 100% 100%	100% R (MY-01 100% 100%	each R2-4c (208 MY-02 100% 100% 100%	ft) MY-03 100% 100% 100%	MY-04 100% 100%	MY-05
Bed General Structures Rootwads Feature Riffles Pools Fhalwegs Meanders	100% 100% Initial 100% 100% 100%	100% Rc MY-01 100% 100% 100%	each R2-4c (208 MY-02 100% 100% 100% 100%	ft) MY-03 100% 100% 100%	MY-04 100% 100% 100%	MY-05
Bed General Structures Rootwads Feature Riffles Pools Fhalwegs	100% 100% Initial 100% 100%	100% R MY-01 100% 100%	each R2-4c (208 MY-02 100% 100% 100%	ft) MY-03 100% 100% 100%	MY-04 100% 100%	MY-05

		tream Problem Areas Stream Restoration	
Feature/Issue	Station / Range	Probable Cause	Photo No. (If Available)
None observed Monitoring Year 4 (2011)	N/A	N/A	N/A
None observed Monitoring Year 3 (2010)	N/A	N/A	N/A
None observed Monitoring Year 2 (2009)	N/A	N/A	N/A
None observed Monitoring Year 1 (2008)	N/A	N/A	N/A

APPENDIX A

 \oplus

 \oplus

NOTE: NOT TO SCALE Not all symbols used in plans

BOUNDARIES AND PROPERTY:
State Line
County Line
Township Line
City Line
Reservation Line
Property Line
Existing Iron Pin
Property Corner
Property Monument
Existing Fence
Temporary Fence
Proposed Woven Wire Fence
Proposed Chain Link Fence
Proposed Barbed Wire Fence
Tree Protection Fence
Wetland Boundary
Proposed Oxbow Wetland Boundary
Conservation Easement
Construction Limits
Limits Of Disturbance
Proposed Gate
Bench Mark
Control Point-
BUILDINGS AND OTHER CULTURE:

Sign	Ş
Foundation	
Area Outline	
Building the second	
School sector se	
Church	

HYDROLOGY:

Hydro, Pool or Reservoir
River Basin Buffer
Flow Arrow
Disappearing Stream
Spring ······
Thalweg
Top Of Bank
Swamp Marsh 🗤 🕹
Proposed Lateral, Tail, Head Ditch
Bedrock

RAILROADS: Standard Guage RR Signal Milepost at the rest of the second Switch SWITCH RR Abandoned ROADS AND RELATED FEATURES: Existing Edge of Pavement Existing Curb Existing Soil Road Existing Metal Guardrail Existing Cable Guiderail **VEGETATION:** - and a second Single Tree Single Shrub ¢ Hedge Woods Line Vineyard **EXISTING STRUCTURES:** MAJOR: Bridge, Tunnel or Box Culvert CONC Bridge Wing Wall, Head Wall and End Wall CONC WW [**MINOR:** Head and End Wall Pipe Culvert Footbridge 60 Drainage Box: Catch Basin, DI or JB

Paved Ditch Gutter _____ Storm Sewer Manhole S Storm Sewer -----

UTILITIES:

POWER:	
Existing Power Pole	•
Existing Joint Use Pole	
Power Manhole	P
Power Line Tower	\boxtimes
Power Transformer	
U/G Power Cable Hand Hole	н _н
H-Frame Pole	••
Recorded U/G Power Line	P
GAS:	
Gas Meter	Ò
Recorded U/G Gas Line	G
Above Ground Gas Line	A/C Cas

TELEPHONE

UEGEN

TELEPHONE:	
Existing Telephone Pole	
Telephone Manhole	Û
Telephone Booth	3
Telephone Pedestal	T
Telephone Cell Tower	" ,
U/G Telephone Cable Hand Hole = == += += +=	HH
Recorded U/G Telephone Cable	T
Recorded U/G Telephone Conduit	TC
Recorded U/G Fiber Optics Cable	
WATER:	
Water Manhole	W
Water Valve	٢
Water Hydrant	¢
Recorded U/G Water Line	w
Above Ground Water Line	

TV:

TV Satellite Dish 8 TV Pedestal C TV Tower - ---- \bigcirc U/G TV Cable Hand Hole НЫ Recorded U/G TV Cable Recorded U/G Fiber Optic Cable **MISCELLANEOUS:** Utility Pole • Utility Pole with Base \odot Utility Located Object S Utility Traffic Signal Box Utility Unknown U/G Line -- 2UTL -U/G Tank; Water, Gas, Oil A/G Tank; Water, Gas, Oil and the sea was was and the Abandoned According to Utility Records AATUR End of Information E.O.I. SANITARY SEWER: Sanitary Sewer Manhole Ø Sanitary Sewer Cleanout Ð U/G Sanitary Sewer Line and the set of the s Above Ground Sanitary Sewer Recorded SS Forced Main Line and a state of the second sec

DATE B

REVISIONS PROJECT ENGINEER	PROJECT REFERENCE ND. TRIBUTARY TO REEDY FORK	SHEET ND. 2
YEAR IMONITORING	LEGEND	
	PD Box 33127 Raleigh, N.C. 27636 (919) 851-1912 (919) 851-1918 (FAX) WWW.MULKEYINC.COM	

PROPOSED STREAM WORK:

	STREAM STRUCTURES:	
	Rock Crossvane	
	Rock Vane	gaaaa
	J Hook Rock Vane	boog
_	Flood Plane Interceptor	
_	Constructed Riffle	
	Root Wad	- Aller
	Log Weir	
_	Structure Number	$\langle \rangle$
_	Constructed Flood Plane Interceptor	ESB.
	STREAM FEATURES:	
	Constructed Bankfull/Top Of Bank	
	Old Top Of Bank	
	Constructed Thalweg	
_	Proposed Thalweg	
-	Waters Edge	
	Old Waters Edge	·
	Vernal Pool	
	Surface Water	XXX
	Staging Area	$\sim \sim$
_	Impervious Dike	\bigcirc
	Permanent Improved Gravel Road	
	Temporary Gravel Road	
	Stone Outlet Sediment Trap	
	Impervious Stream Channel Plug	
	Fill Existing Stream Channel	
_	Vegetation Plot	
_	Brush Pile	
	MISCELLANEOUS:	
	Photo Point	(PP #I)
	Cross Section	s
	Crest Gauge	\bigcirc

 \oplus

(

Ð

REVISIONS	PROJECT ENGINEER	PROJECT REFERENCE NO.	SHEET NO.		
DESCRIPTION		TRIBUTARY TO REEDY FORK	8		
YEAR I MONITORING		YEAR 4 MONITORING			
FEAR 2 MONITORING		IEAK 4 MONITOKING			
YEAR 4 MONITORING					
		PD BDX 33127 RALEIGH, N.C. 27636 (919) 851-1912 (919) 851-1918 (FAX) WWW.MULKEYINC.CDM			

	PROJECT CONTROL				
PT	NORTHING	EASTING	ELEV		
1	882635.486	1836650.439	709.24		
3	883045.930	1833987.836	659.34		
8	883176.140	1832887 260	639.98		
9	883165.690	1833166.680	635.36		
10	882996.250	1833092.760	630.95		
11	882724.700	1833013.410	635.78		
12	882530.290	1833120.310	644.73		
13	882504.040	1833345.040	647.87		
14	882624.010	1833599.280	652.25		
15	882618.620	1833844.520	669.88		
16	B82245.430	1834077.110	663.16		
17	881887.050	1834217.040	659.75		
18	881689.020	1834268.580	657.91		
19	881317.340	1834574.690	673.03		
20	881247.830	1834861.440	665.04		
21	880763.460	1835075.700	671.79		
100	880763.207	1835215.966	669.27		
101	880886.696	1834997.543	667.87		
300	882831.020	1833936.544	662.64		
301	882849.487	1833633.149	654.82		
600	880847.484	1835232.374	670.54		

 \oplus

 \oplus

APPENDIX B

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

PHOTOGRAPHIC LOG

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Vegetation Plot 7

As-Built Surveys, April 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

APPENDIX C

Photo Point 1: Looking upstream toward driveway

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 1: Looking toward Reach R2-4a and R2-4c

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 1: Looking upstream on Reach R2-4b

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 1: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 2: Looking upstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 2: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 3: Looking upstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 3: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 4: Looking upstream on Reach R2

As-Built Surveys, April 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

PHOTOGRAPHIC LOG

Photo Point 4: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 5: Looking upstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 5: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 6: Looking upstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 6: Looking downstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 7: Looking upstream on Reach R2

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 7: Looking across Reach R2, upstream on Reach R1

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 8; Looking upstream on Reach R1

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

Photo Point 8: Looking downstream on Reach R1

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, September 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

APPENDIX D

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

As-Built Surveys, April 2008

Year 1 Monitoring, September 2008

Year 2 Monitoring, September 2009

Year 3 Monitoring, October 2010

Year 4 Monitoring, November 2011

Year 5 Monitoring

APPENDIX E

CROSS Sections

(ft) noitsvel∃

RIVERMORPH CROSS SECTION SUMMARY

Reach Name:	R2-4b Name: (Year	4) Cross Se /2011	ction 1	. – Riffle (R2-4b)	
Cross Section	Data Entry				
BM Elevation: Backsight Rod	Reading:	0 ft 0 ft			
ТАРЕ	FS	ELEV		NOTE	
0 7 12 17 19 23 26 28 29 30 31 35 37 38 38.5 41 44 47 50 55 59 62 67 70		674.484 673.482 672.763 672.016 671.831 671.605 671.686 671.656 671.651 671.646 671.572 671.386 671.173 671.291 671.396 671.713 671.529 671.425 672.165 672.893 673.283 673.552			
Cross Sectiona	l Geometry				
Floodprone Ele Bankfull Eleva Floodprone Wid Bankfull Width Entrenchment R Mean Depth (ft Maximum Depth Width/Depth Ra Bankfull Area Wetted Perimet Hydraulic Radi Begin BKF Statio	evation (ft) ation (ft) atio (ft) atio (ft) (ft) (ft) (sq ft) cer (ft) us (ft) cion	Channel 672.25 671.71 40 12.97 3.08 0.24 0.54 54.04 3.1 13.1 0.24	Left 672.25 671.71 5.49 0.16 0.29 34.31 0.89 5.85 0.15 31	Right 672.25 671.71 7.48 0.3 0.54 24.93 2.21 7.83 0.28 36.49	

Entrainment Formula: Rosgen Modified Shields Curve

Slope Channel Left Sid**e** Right Side Shear Stress (lb/sq ft) Movable Particle (mm)

River Name: (Y Reach Name: R2 Cross Section Name: (Y Survey Date: 09	2-4c (ear 4) Cross Sect		2-4c)
Cross Section Data Ent	ry		
BM Elevation: Backsight Rod Reading:	0 ft 0 ft		
TAPE FS	ELEV	NOTE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 671.25\\ 671.22\\ 670.64\\ 670.36\\ 669.7\\ 669.47\\ 669.73\\ 669.36\\ 669.03\\ 668.88\\ 668.85\\ 669.1\\ 669.53\\ 669.53\\ 669.68\\ 669.54\\ 670.92\\ 671.69\\ 671.93\\ 671.93\\ 671.93\\ 672.08\\ 672.58\end{array}$	GS GS GS GS GS GS LB LEW GS GS GS TW GS REW BKF GS GS GS GS GS GS GS GS GS GS GS GS GS	
Cross Sectional Geomet	ry		
Floodprone Elevation (Bankfull Elevation (ft Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	ft) 670.51 67 669.68 66 37.3 8.66 3 4.31 0.29 0 0.83 0 29.86 9 2.55 1 8.97 4 0.28 0 31.34 31	eft Right 70.51 670.51 59.68 669.68 .56 5.1 .36 0.25 .83 0.79 .89 20.4 .29 1.26 .52 6.04 .29 0.21 .34 34.9 .9 40	
Entrainment Calculation	ns		

Entrainment Formula: Rosgen Modified Shields Curve

Slope Shear Stress (lb/sq ft) Movable Particle (mm)

.

RIVERMORPH CROSS SECTION SUMMARY

River Name: Reach Name: Cross Section Name Survey Date:	R2-3	4) Cross Se /2011	ection 3	- Pool (R2-3	-
Cross Section Data	Entry				
BM Elevation: Backsight Rod Read	ing:	0 ft 0 ft			
TAPE FS		ELEV		NOTE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		669.81 669.337 668.976 668.741 667.836 667.194 667.2 666.635 666.216 666.396 665.365 665.307 665.439 666.312 666.312 666.398 666.457 667.075 667.075 667.075 667.528 667.724 668.302 668.638 667.76		GS GS GS GS GS GS LB GS GS LEW GS TW GS REW GS GS GS GS GS GS GS GS GS GS GS GS GS	
Cross Sectional Ge	ometrv				
Floodprone Elevatio Bankfull Elevation Floodprone Width (Bankfull Width (ft Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq Wetted Perimeter (Hydraulic Radius (Begin BKF Station End BKF Station	ft) ft) ft) ft) ft) ft) ft)	Channel 668.85 667.08 67.38 11.58 5.82 0.65 1.77 17.82 7.54 13.03 0.58 41.42 53	Left 668.85 667.08 9.96 0.73 1.77 13.64 7.26 11.71 0.62 41.42 51.38	Right 668.85 667.08 1.62 0.17 0.34 9.53 0.28 2 0.14 51.38	
Entrainment Calcula	ations				

Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side Slope 0 0 0 Shear Stress (lb/sq ft) Movable Particle (mm)

RIVERMORPH CROSS SECTION SUMMARY

River Name: (Year 4) Reedy Fork Creek Reach Name: R2-3 Cross Section Name: (Year 4) Cross Section 4 - Riffle (R2-3) Survey Date: 09/26/2011
BM Elevation: 0 ft Backsight Rod Reading: 0 ft TAPE FS ELEV NOTE 0 0 665.11 GS 9 0 665.046 GS 21 0 665.119 GS 28 0 664.832 GS 37 0 663.753 GS 41 0 663.905 GS 48 0 663.905 GS 50.1 0 663.28 LEW 52.5 0 662.802 GS 52.8 0 662.802 GS 53.2 0 662.812 GS
Backsight Rod Reading: 0 ft TAPE FS ELEV NOTE 0 0 665.11 GS 9 0 665.046 GS 21 0 665.119 GS 28 0 664.832 GS 37 0 663.753 GS 41 0 663.905 GS 46 0 663.947 BKF 50.1 0 663.28 LEW 52.5 0 663.28 LEW 52.8 0 662.802 GS 53.2 0 662.675 TW 54 0 662.812 GS
0 0 665.11 GS 9 0 665.046 GS 21 0 665.119 GS 28 0 664.832 GS 37 0 663.753 GS 41 0 663.905 GS 46 0 663.947 BKF 50.1 0 663.28 LEW 52.5 0 663.28 LEW 52.8 0 662.802 GS 53.2 0 662.675 TW 54 0 662.812 GS
9 0 665.046 GS 21 0 665.119 GS 28 0 664.832 GS 37 0 663.753 GS 41 0 663.815 GS 46 0 663.905 GS 48 0 663.568 GS 50.1 0 663.28 LEW 52.5 0 662.802 GS 53.2 0 662.675 TW 54 0 662.812 GS
54.2 0 663.205 REW 57.6 0 663.482 GS 60 0 664.127 GS 61 0 664.275 GS 65 0 664.459 GS 71 0 665.619 GS 81 0 665.8 GS
Cross Sectional Geometry
Channel Left Right Floodprone Elevation (ft) 665.23 665.23 665.23 Bankfull Elevation (ft) 663.95 663.95 663.95 Floodprone Width (ft) 77.6 Bankfull width (ft) 11.34 5.67 5.67 Entrenchment Ratio 6.84 Mean Depth (ft) 0.53 0.53 0.54 Maximum Depth (ft) 1.28 1.28 1.19 Width/Depth Ratio 21.4 10.7 10.5 Bankfull Area (sq ft) 6.05 3 3.04 Wetted Perimeter (ft) 12.01 7.21 7.18 Hydraulic Radius (ft) 0.5 0.42 0.42 Begin BKF Station 48 48 53.67 End BKF Station 59.34 53.67 59.34
Entroimment Commular Desgen Medified Chields Commu
Entrainment Formula: Rosgen Modified Shields Curve Channel Left Side Right Side

Slope Shear Stress (lb/sq ft) Movable Particle (mm)

0

0

RIVERMORPH CROSS SECTION SUMMARY

River Name: (Y Reach Name: R2 Cross Section Name: (Y Survey Date: 09	-3 ear 4) Cross Secti		
Cross Section Data Ent			
BM Elevation: Backsight Rod Reading:	0 ft 0 ft		
TAPE FS	ELEV	NOTE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 661.348\\ 661.24\\ 661.141\\ 661.116\\ 660.626\\ 660.516\\ 660.546\\ 660.732\\ 660.721\\ 660.259\\ 659.974\\ 659.675\\ 659.974\\ 659.675\\ 659.974\\ 660.06\\ 660.231\\ 660.695\\ 660.726\\ 660.466\\ 660.892\\ 661.051\\ 661.67\\ 662.186\\ 662.792\\ 663.376\\ 663.763\\ 664.148\\ \end{array}$	GS GS BKF GS GS LEW TW REW GS GS GS GS GS GS GS GS GS GS GS GS GS	
Cross Sectional Geomet	ry		
Floodprone Elevation (Bankfull Elevation (ft) Floodprone Width (ft)	Channel Le 661.77 66 660.72 66 77.74 12.61 6. 6.17 0.45 0. 1.05 1. 28.02 11 5.7 3. 12.89 7. 0.44 0. 43 43		

Entrainment Calculations				
Entrainment Formula: Rosge	en Modified	Shields Cur	ve	8
Slope Shear Stress (lb/sq ft) Movable Particle (mm)	Channel 0	Left Side 0	Right Side O	

.

RIVERMORPH CROSS SECTION SUMMARY

River Name: (Year Reach Name: R2-3 Cross Section Name: (Year Survey Date: 09/26,	4) Cross Section (
Cross Section Data Entry		
BM Elevation: Backsight Rod Reading:	0 ft 0 ft	
TAPE FS	ELEV	NOTE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	658.579 658.785 658.785 658.767 658.674 658.155 657.803 657.502 657.67 658.013 656.731 657.126 657.19 656.82 656.647 656.299 656.041 655.131 654.785 654.933 654.745 655.081 655.501 655.941 655.941 656.404 656.669 656.61917 657.438 657.856 658.071 658.815	GS GS GS GS GS GS GS GS GS GS GS GS GS G
Cross Sectional Geometry		
Floodprone Elevation (ft) Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio	ChannelLeft658.9658.9656.82656.8210010.615.39.430.910.842.082.0411.666.31	

Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	9.63 11.64 0.83 49 59.61	4.46 7.73 0.58 49 54.3	5.17 7.8 0.66 54.3 59.61	
				•
Entrainment Calculations				
				•
Entrainment Formula: Roso	gen Modified	Shields Cur	ve	
	Channel	Left Sid e	Right Side	
Slope	0	0	0 _	
slope	0	0	0	

Slope Shear Stress (lb/sq ft) Movable Particle (mm)

River Name: Reach Name: Cross Section Survey Date:	R1 Name: (Year	4) Cross Se		2001 (R1)
Cross Section				
BM Elevation: Backsight Rod	Reading:	0 ft 0 ft		
	FS	ELEV	NOT	Е
0 10 19 28 36 45 50 53 54 55 56 57 57 57 57 57 57 57 58 58 59 59 59 59 59 59 59 59 59 59		656.948 655.501 654.628 652.989 652.325 652.257 652.173 652.327 652.132 651.913 651.694 651.672 651.378 651.62 651.591 651.657 651.894 652.299 652.215 652.24 652.612 653.66 653.653 653.507 653.887	GS GS GS GS GS GS GS LEW TW GS GS CS GS GS GS GS GS GS GS GS GS GS GS GS GS	ά.
Cross Sectiona] Geometry			
Floodprone Ele Bankfull Eleva Floodprone Wid Bankfull Width Entrenchment R Mean Depth (ft Maximum Depth Width/Depth Ra Bankfull Area Wetted Perimet Hydraulic Radi Begin BKF Stat End BKF Statio	tion (ft) (ft) atio) (ft) tio (sq ft) er (ft) us (ft) ion	Channel 653.72 652.28 73.76 8.91 8.28 0.5 1.44 17.82 4.43 9.72 0.46 54 62.91	Left 653.72 652.28 4.45 0.55 1.44 8.09 2.46 6.06 0.41 54 58.45	Right 653.72 652.28 4.46 0.44 0.93 10.14 1.97 5.52 0.36 58.45 62.91

Entrainment Calculations				
Entrainment Formula: Rosge	en Modified	Shields Cur	ve	
Slope Shear Stress (lb/sq ft) Movable Particle (mm)	Channel 0	Left Side O	Right O	Side

Longitudinal Profiles

(Year 4) R1 Longitudinal Profile (0+00 to 6+00)

Elevation (ft)

River Name: (Year 4) Reedy Fork Creek Reach Name: R1 Profile Name: (Year 4) R1 Longitudinal Profile Survey Date: 09/26/2011

Survey Data

DIST	СН	WS	BKF	LB	RB	LEW	REW
0	661.82	263					
4.1323 5.6703	661.70)9			662.471		
5.6703				662.314			
20.2483 20.8133	661.37	76		662.249			
22.8923 32.1723	661.16	:2			661.926		
32.1723	001.10	5		661.888			
33.1833 40.1893	660.99	95			661.542		
40.1893	000100			CC4 CC5	661.611		
40.8573 47.6453				661.665 661.529			
49.0623	660 57				661.437		
49.0743 58.1083	660.57	2		661.386			
58.8113 59.2563	660.66	i3			661.152		
68.0063					660.999		
69.5453 69.6323	660.28	4		661.096			
75.7903	660.12	9					
75.7903 79.9083				660.704	660.891		
81.9283 83.7033	660.11	.9		660.992			
92.4433		_		000.992	660.843		
92.4433 93.9103	659.92	2		660.686			
97.6513	650 73	0		0001000	660.863		
97.9443 100.0403	659.73	9		660.659			
101.1903 102.3673	659.47	5			660.116		
110.7633	659.30	3					
110.8583 110.9043				660.194	660.218		
116.7593	650 30	_		660.198	0001110		
117.4693 118.6963	659.28	5			660.169		
124.9023	650 00	0		659.971			
124.9023 126.5133	658.98	9			659.859		
131.8753 132.6283				659.61	659.882		
132.7473	658.87	7					
142.6713 143.7233	658.19	2		659.502			
143.7233					659.492		

146.2063	658.161	
150.9983 152.5893	658.648	
152.9973 161.9733	650 315	
162.7163 167.2953 167.2953	658.215 658.153	
167.2955 167.4073 168.7513		658.485
172.3763 172.3763	657.2	
172.7493 174.4363		657.9
178.9883 179.7433		657.654
179.8613 180.1553	657.335	
180.5633 183.6953		657.657
184.2613 185.6133	657.201	
187.5673 191.0473		657.482
191.1983 191.1983	656.836	
199.9373 199.9373	657.061	657.466
199.9963 200.6183 205.4713		057.400
207.2433	656.705	657.358
207.2953	0901709	
216.5993 216.5993	656.947	657.372
217.4643 224.1993		
225.1423 225.1423	656.511	
225.2883 228.3223	656.854	657.302
228.3643 230.1213		657.154
230.2623	CEC 047	656.917
234.5543	656.047	656.925
240.3563 240.5233 240.8183	656.4	000.920
240.8183 241.1873 247.2953	656.341	
247.3433 247.7493	090.941	656.921
248.6813 250.9113	655.729	
251.0813 257.6933		656.931
257.6933 257.7483	656.598	656.781
260.9093 264.4503	656.174	
264.4503 264.6073		656.477

659.362 659.394 658.943 659.19 658.485 658.896 658.994 657.9 658.991 658.673 657.654 658.731 658.693 657.657 658.67 658.376 657.482 657.835 658.275 657.466 658.272 658.147 657.358 658.162 658.081 657.372 658.072 657.777 657.903 657.302 657.154 657.812 657.87 656.917 657.607 656.925 657.556 657.558 656.921 657.565 657.434 656.931 657.326 656.781 657.375 657.292 656.477

266.8623 272.6193	655.728
272.6193 272.8743 274.8713 279.6393	656.452 656.167
279.6393 279.6393 279.6883 282.8453	656.445
284.4283 285.8383 285.8853	656.345 655.379
286.0223 289.9193 290.0443	656.332 655.412
290.6173 299.9443 300.3693	656.233
300.3823 301.0653	655.754
307.2233 307.8213 307.8213	656.018 655.09
309.5573 314.3183	655 244
316.6063 317.0583 317.9123	655.214 655.99
319.9943 326.2253 327.2953	655.525
327.4563 329.0943	655.847
337.4543 337.4543 337.8433	654.676 655.534
343.4253 345.6313 345.6313	655.033
345.6723 346.4803	655.45
355.5373 356.0173 356.1373	655.382
356.9083 363.7873	
365.9483 365.9483 366.0803	654.689 654.961
369.0203 369.7183 371.4353	654.926 654.115
372.8963 372.8993	654.916 654.644
374.2793 378.5033 379.4423	654.374
379.5533 380.2163	654.608
387.0233 387.1653 387.1653	654.302 653.401
389.1043 394.5053	653.968
394.5053 394.6173	654.172

657.252		
	657.036	656.452
657.166		0001152
657.197		656.445
	656.887 656.712	656 245
656.649		656.345
030.049		656.332
656.749		656.233
656.61		3 3
	656.767	656.018
656.475	656.483	
030.473	656.352	
	656.551	655.99
656.432	656.263	000100
656.177		655.847
656.089		
656.044	656.251	655.534
	656 100	655.45
	656.129 656.092	655 202
655 839		655.382
655.839 655.754	655.811	
		654.961 654.926
	655.462	0011020
		654.916
655.538 655.372		
	655 142	654.608
655.049	655.142	654.302
000.049	654,964	
654.933	0011007	
		654.172

654.643 395.0863 654.4 403.9403 404.2163 654.518 404.6393 404.7413 653.276 653.677 653.677 654.599 412.8533 412.8533 652.946 413.1473 653.606 653.606 417.7263 654.496 420.5183 654.018 421.8223 653.467 653.467 422.2133 654.31 422.2133 652.881 428.2923 653.457 653.457 428.5293 428.5293 654.173 652.756 432.8663 652.688 653.434 432.9413 653.434 654.194 433.9833 435.2063 653.621 653.024 447.4313 653.024 447.5273 652.487 653.737 447.7563 653.442 448.8093 652.842 456.4913 652.842 456.5343 456.5343 653.753 652.301 653.219 459.0103 464.1543 652.123 464.2913 652.441 652.441 464.4603 466.3973 653.25 653.195 652.318 470.4533 652.318 652.057 470.5633 471.6343 652.904 473.6133 653.06 474.3073 652.988 475.8143 651.669 475.8143 653.049 651.852 475.9653 651.852 482.9343 652.581 482.9343 651.256 483.3573 651.895 651.895 653.039 485.6393 487.2093 650.735 487.2093 652.607 487.5693 651.831 651.831 652.706 489.8393 652.191 492.5293 651.808 651.808 493.4403 652.541 493.7363 493.7363 650.93 650.843 651.657 652.277 652.299 651.694 651.62 497.6173 652.158 501.6533 504.0383 651.05 652.143 504.0383 651.602 504.0553 651.602 652.495 507.2793 651.896 512.6683 513.3093 650.971 651.442 513.3093 651.442 513.4093 520.7743 651.895 651.618 651.96 522.1693 650,701 522.1693 651.334 651.334 522.2343

527.8953 651.247 651.247 527.9253 650.552 527.9253 652.01 537.6253 651.487 537.6253 650.743 537.8943 541.2883 651.14 651.14 651:553 550.0603 650.928 551.4363 650.184 551.4773 650.753 650.753 551.5453 555.8193 651.35 650.108 555.8193 651.214 556.0833 650.809 650.809 559.4933 650.071 559.4933 650.767 559.9733 565.2553 650.719 650.719 651.077 567.9803 650.286 568.0153 650.736 650.736 569.9393 651.097 576.7993 650.075 577.0823 650.742 650.742 577.3393 651.201 579.3453 650.982 583.7963 651.242 585.5143 651.187 586.4543 650.405 650.405 586.7473 649.976 587.8943 651.416 649.809 591.3133 592.6683 650.389 650.389 594.9323 596.1063 650.832 650,962 602.5403 650.65 602.7113 650.231 650.231 603.1063 649.923 603.7693 650.641 607.1273 649.553 649.553 607.1453 649.459 611.5043 649.056 649.056 611.5583 616.7463 648.93 650.098 617.5853 648.891 648.891 617.6303 648.817 649.491 Cross Section / Bank Profile Locations Name Туре Profile Station _____ ------(Year 4) Cross Section 7 - Pool (R1)Pool XS 497.6173 Measurements from Graph Bankfull Slope: 0.0197 Min Variable Avg Max _____ s riffle 0.01424 s pool 0.00000 0.03762 0.05154 s pool 0.00357 0.00950 0 s run 0 0 S glide 0 0 0 17.50 29.92 40.72 P - P Pool length 7.13 8.37 10.59 Riffle length 6.26 8.58 13.77

Dmax riffle 0.70 0.77 0.92 Dmax pool 1.34 1.51 1.71 Dmax run 0 0 0 Dmax glide 0 0 0 Low bank ht 0 0 0 Length and depth measurements in feet, slopes in ft/ft. γ
RIVERMORPH PROFILE SUMMARY
Notes
River Name: (Year 4) Reedy Fork Creek Reach Name: R1 Profile Name: (Year 4) R1 Longitudinal Profile Survey Date: 09/26/2011
DIST Note

497.6173 XS7 - TW Intersect @ station 497.6173

5 - K

_____ River Name: (Year 4) Reedy Fork Creek Reach Name: R2-2 Profile Name: (Year 4) R2-2 Longitudinal Profile 09/26/2011 Survey Date: Survey Data DIST CH WS BKF LB RB LEW REW 1802.29 654.75 1812.26 656.866 1815.1 654.827 654.827 1815.77 654.741 1815.77 657.204 1830.31 657.032 1830.37 653.978 1830.72 654.778 654.778 656.962 1830.94 1842.67 654.396 654.396 1842.89 654.172 1843.35 656.003 1844.57 656.672 1852.5 654.562 654.562 1852.5 653.51 1852.96 656.529 1855.76 656.384 1870.57 656.62 1872.18 654.666 654.666 1872.84 653.83 1874.99 654.989 1887.44 654.397 1891.9 654.034 1891.94 654.373 654.373 656.285 1893.41 1910.81 656.255 1911.43 653.99 653.99 1911.53 653.567 1917.38 655.979 1927.86 655.301 1931.11 653.881 653.881 1932.34 653.141 1934.95 655.859 1937.96 655.218 1940.78 653.576 653.91 1940.86 653.91 1940.97 1958.76 655.877 655.58 1962.78 652.808 653.265 1962.95 653.265 654.982 1963.37 1975.3 654.842

655.163 654.629

653.303

653.269

652.385

652,101

1980.44

1981.97 1981.97

1998.26

1998.37

1998.37

2004.34

2018.16

653.269

653.303

654.789 654.708

2019.45 2019.69 2020.17	652.343	653.314	654.424		653.314
2020.45 2032.47 2032.93 2034.54	651.972	653.438	654.382 653.861		653.438
2034.54 2045.26	652.676			654.468	652 206
2045.35 2053.02	653.221	653.286			653.286
2053.02 2053.33 2055.68 2074.7		653.331		654.399 653.656 653.614	653.331
2074.78 2076.73 2089.35	652.718	652.8	653.385 653.529		652.8
2089.35 2089.91	651.007			653.989	
2090.34	CE1 400	652.078			652.078
2100.65 2100.83 2101.21	651.498	651.835		653.55	651.835
2101.24 2124.3			653.106 653.918		
2126.2	CE4 477	651.427	0001020		651.427
2126.2 2128.1	651.177			653.659	
2149.81 2151.43		651.288		653.277	651.288
2151.83	650.872	051.200			0911200
2153.79 2172.12		650.91	652.948		650.91
2172.12	650.654		CE2 112		
2173.85 2178.1			653.113	653.061	
2194.62 2198.53			652.743	652.819	
2198.53	650.455		052.745		
2199.18 2215.27		650.591		652.74	650.591
2217.03	650 212	650.776			650.776
2217.34 2217.69	650.212		652.35		
2249.03 2249.61	650.17	650.334	652.019	651.979	650.334
Cross Section / Bank Profile Locations					
Name			Туре		Profile Station
Measureme	nts from	Graph			
Bankfull	slope:	0.01039			

Variable	Min	Avg	Мах
S riffle S pool S run S glide P - P Pool length	0.02088 0.00000 0 25.92 17.11	0.02650 0.00206 0 57.70 19.88	0.03384 0.00445 0 0 78.73 22.00

Riffle length 2 Dmax riffle 0 Dmax pool 2 Dmax run 0 Dmax glide 0 Low bank ht 0 Length and depth	2.21 0 0 0 h measurements					
RIVERMORPH PROFILE SUMMARY						
Notes						
River Name: (Year 4) Reedy Fork Creek Reach Name: R2-2 Profile Name: (Year 4) R2-2 Longitudinal Profile Survey Date: 09/26/2011						
DIST Note						

(ff) noitsvel3

R2-3 Longitudinal Profile (1+82 to 18+00)

(ff) noitsvel3

.50 L

(ft) (ft)

ан — П

Elevation (ft)

R2-3 Longitudinal Profile (11+00 to 16+00)

Elevation (ft)

-
RIVERMORPH PROFILE SUMMARY

River Name: (Year 4) Reedy Fork Creek Reach Name: R2-3 Profile Name: (Year 4) R2-3 Longitudinal Profile Survey Date: 09/26/2011

Survey Data

DIST	СН	WS	BKF	LB	RB	LEW	REW
182.12 182.679 192.34	668.09 668.11 668.021			668.836	668.705		
192.34 204. 2 4				669.232 669.06			
204.24 204.42 206.1	667.986	668.352			668.842	668.352	
214.48 215.11				668.816	668.886		
215.21 215.32 225.47	668.022	668.201			668.574	668.201	
227.01 227.2	667.374	668.405				668.405	
229.02 240.43 243.95				668.652 668.57	668.708		
246.36 249.84 249.9	667.491	668.278		668.581		668.278	
249.9 249.9 263.06	007.491			668.66	668.029		
263.8 263.8 263.82	667.317	668.051			669.134	668.051	
275.27 277.85	667.281	000.001			668.655	000.001	
277.85 278.15 286.99		668.09		668.554 668.531		668.09	
287.08 287.64	667.309	667.999				667.999	
289.05 294.97 295.15	667.4	667.911			668.72	667.911	
295.58 296.16				668.493	668.554		
302.51 302.51 302.51	667.374			668.626			
302.59 303.35	667.186	667.96				667.96	
303.54		667.838				667.838	

204 25					660 500		
304.25 304.78					668.502 668.49		
312.26				668.108			
314.85	667.154						
314.85					668.166		
314.9		667.691				667.691	
320.33		668 E 41		668.177			
321.96 322.29	667.051	667.541				667.541	
322.29	001.031				667.917		
334.78				668.209	00,001,		
335.21		667.668				667.668	
335.44					668.295		
335.5	666.776						
347.56	CCC 30			667.915			
348.3 348.39	666.72	667.575				667.575	
352.38		007.575			668.292	007.075	
365.1					667.993		
371				667.979			
371	666.355						
381.23				667.933			
382.71		666,973				666.973	
382.77 384.28	666.54				667.734		
394.84				667.505	007.754		
396.11		666.668		00,1000		666.668	
396.41	666.208						
398.92					667.359		
404.76		666.455				666.455	
404.76	CCC 050				667.096		
404.76 407.19	666.053			667.187			
407.19				007.107	667.379		
413.42	665.848				007.079		
413.42		666.227				666.227	
415.96				667.393			
430.29				667.688			
431.94	CCE 057	666.358				666.358	
432.27 433.05	665.857				667.299		
442.67	665.618				007.200		
442.67				666.87			
443.18		666.336				666.336	
443.93					667.037		
453.64	665.307	666.354		667.075		666.396	666.312
463.09					666.983		
465.77 465.77		666.158			666.828	666.158	
465.77	665.777	000.100				000.100	
475.44	0000177			666.741			
477.28		666.162				666.162	
477.32	665.328						
479.22					666 _° ,758	ccc 040	
490.57		666.042			666.76	666.042	
490.71 490.71	665.506				000.10		
497.49				666.666			
504.27		665.665				665.665	
504.27	665.066		000				

Page: 2

504.27				667.028	
507.59			666.627		
520.17				666.531	
520.23 520.28	664.971	665.706			665.706
523.99	004.9/1			666.424	
525.34			666.584		
525.93		665.923			665.923
527.62	664.924		<i></i>		
527.67 532.93			666.667		
534.64		665.769	00/1202		665.769
535.13	664.882				
536.4 543.67			666.964	666.377	
543.67	664.834		000.904		
544.18		665.652			665.652
546.08				666.431	
555.11	664.682		CCC 204		
555.11 556.77		665,591	666.304		665.591
557.89		0001091		666.304	000.001
570.27			666.036		
570.57	CC4 011	665.437			665.437
570.87 573.4	664.811			665.954	
585.66			666.25	000.001	
587.7		665.049			665.049
588	CC2 70			666.426	
588 601.12	663.78		665.831		
604.05				666.283	
604.05	664.43				
604.44 620.56		665.181 664.898			665.181 664.898
620.93		004.090		665.921	004.090
620.93	664.454				
622.65			665.831		
634.13 635.23		664.731	665.57		664 721
636.4		004.751		665.646	664.731
636.4	664.083				
651.74		664.66			664.66
651.82	664.028			665.931	
652.24 652.88			665.932	003.931	
667.81			666.439		
667.81	663.177				
670.25		664.717		665 667	664.717
674.1 680.1		664.628		665.667	664.628
682.65				665.446	
693.08				665.534	
694.18 694.18	664.441		665.315		
694.49		664.613	000.0T0		664.613
711.05				665.332	
711.73	663.956				
711.94 713.98		663.987	665.163		663.987
110.30			000.100		

725.98 726.12	663.559	663.836			663.836	
726.12 728.35				665.194 665.037		
742.06	663.208			664.966	CC2 750	
742.42 744.14 758.1		663.759	665.027 664.978		663.759	
762.37		663.553	004.070	664.743	663.553	
762.99 762.99	663.022			664.712		
776.14 776.64	662.686	663.612			663.612	
776.7 777.1			664.397	664.725		
790.03 790.29	662.545	(c) 250	664.388		((2) 250	
790.69 792.22 802.17		663.359 663.356		664,268	663.359 663.356	
802.17 802.48 804.64	662.702	003.550		664.319	005.550	
811.52 813.27		663.484	663.871		663.484	
813.67 815.87	663.006			664.067		
831.32 847.08	662.675 662.662	663.243	664.151	663.947	663.28	663.205
847.08 847.44 847.85		663.22	663.899	664.228	663.22	
856.8 858.16			663.713	664.193		
858.16 858.16	662.727	663.342			663.342	
866.55 867.12		663.214		664.167	663 .2 14	
867.12 870.68	662.833		663.948			
885.8 887.03	662.462	662.823	663.797		662.823	
887.07 887.3 903.57	662.133	002+025		664.151		
903.87 904.59	0001200		663.779	663.831		
904.79 913.63		662.741		663.68	66 2. 741	
915.6 915.6	662,325		663.566			
916.52 927.93		662.71 662.531	663.415		662.71 662.531	
928.45 928.45 933.23	662.21		00J.413	663.816		
940.43 940.73	662.079	662.545			6 62. 545	
940.73			663.398			

943.17 663.835 956.87 661.811 663.644 956.92 957.12 662.247 662.247 958.67 663 417 970.87 662.188 662.188 970.87 6 971.58 661.784 971.58 664.056 974.64 663.419 661.807 985.01 985.01 663.628 985.62 662,053 662.053 662.926 987.6 1006.33 662.847 1006.33 661.116 1006.33 662.272 662.272 1007.31 663.1 1023.1 661.743 1023.1 662.735 1023.1 662.045 662.045 663.07 1024.75 1038.55 661.591 1038.55 662.37 1039.25 661.981 661.981 1043.83 662.751 1059.94 662.556 1061.13 662.631 1062.24 661.388 1062.62 661 1062.62 661.925 661.925 1081.39 662.288 1081.39 661.989 661.989 1081.39 661.251 1085.36 662.402 1099.35 661.657 1099.35 662.512 1099.91 661.935 661.935 662.372 1101.01 1114.07 662.37 1119.73 661.172 1120.21 661.786 661.786 662.592 1121.07 1139.19 661.026 1139.19 662.274 661.444 1139.58 661.444 662.356 1140.96 1161.82 662.164 1162.92 662.162 1162.93 660.284 1163.28 661.319 661.319 1173.26 661.313 661.313 1173.66 660.277 1173.66 661.778 1176.21 661.9 1176.21 660.914 1176.32 661.304 661.304 1183.3 660.688 660.688 660.235 1183.53 1187.14 659.944 1187.47 660.643 660.643 661.578 1189.12

1192.36 661.762 1194.81 659.394 660.621 660.621 1194.9 1201.28 659.571 661.889 1201.28 660.605 660.605 1202.19 661.979 1209.36 659.484 1210.4 660.616 660.616 1210.51 661.69 1212.03 1215.44 661.759 660.094 1216.2 661.534 1216.2 660.628 660.628 1216.39 1217.28 660.096 1217.49 660.581 660.581 661.852 1219.01 1224.53 659.891 661.3 1226.46 659.172 1229.52 660.5 1229.55 660.5 659.401 1234.04 661.625 1234.98 1235.88 658.815 660.505 660.505 1237.71 661.33 1241.1**2** 660.959 1241.84 1241.98 658.434 660.476 1243.08 660.476 660.451 660.451 1247.33 659.312 1247.97 661.038 1248.04 661.152 1251.32 660.556 660.556 1257.61 658.946 1258 1263.03 659.137 660.999 1263.16 660.466 1263.63 660.466 661.116 1266.8 659.868 1269.79 660.377 1270.09 660.828 1276.14 659.142 659.943 1276.14 1279.05 658.13 659.979 659.979 1279.26 660.392 1283.66 660.007 1285.43 660.007 659.03 1285.57 660.597 1292.45 659.977 659.977 1294.16 659.054 1294.54 660.663 1295.75 1301.15 659.28 660.004 660.004 1301.53 660.442 1303.33 659.675 659.974 660.721 660.695 659.974 659.974 1311.23 659.985 659.985 1311.97 1312.83 659.789 659.077 1323.06 659.831 659.831 1323.29

1324.28 660 775 1326.51 660.389 659.273 1330.22 1330.25 659.823 659.823 1333.1 660.433 1337.97 659.148 1338.15 659.862 659.862 660.149 1340.97 658.776 1343.93 1344.29 660.385 1344.5 659.712 659.712 1346.67 660.57 1353.54 659.633 659.633 1353.68 659.212 1361.2 659.572 659.572 660.734 1362 1362 659.004 1364.3 660.554 1368.31 660.601 658.84 1370.16 1370.63 659.148 659.148 1376.47 660.334 1378.44 658.899 658.899 1378.52 658.313 1382.09 660.256 658.239 1384.6 1385.06 658.918 658.918 660.016 1386.82 1389.28 660.133 1391.9 658.905 658.905 1392.18 658.727 1396.69 660.252 1396.95 658.329 1396.97 658.906 658.906 1398.93 660.318 1401.22 658.603 658.828 658.828 1401.41 1410.47 657.706 658.82 1411.43 658.82 1415.5 660.001 1417.68 657.94 1417.85 658.812 658.812 1423.43 658.802 658.802 658.096 1423.47 1423.47 659.454 1427.49 659.26 1430.45 658.228 658.786 1430.53 658.786 1431.13 659.884 659.83 1438.54 1440.25 658.745 658.745 658.087 1440.37 1445.98 659.542 659.715 1452.31 1452.31 658.441 1452.45 658.832 658.832 659.824 1459.75 657.481 1469.29 658.752 1470.09 658.752 1471.03 659.531

1473.06 657.512 658.763 1473.35 658.763 659.338 1481.23 658.802 1482.29 658.802 657.577 1482.42 659.308 1482.44 658.196 1489.46 659.069 659.069 1489.68 657.779 1496.93 1497.08 658.827 658.827 659.721 1500.55 659.08 1501.33 658.645 1503.55 658.645 658.23 1503.88 1504.95 658.975 658.395 1512.75 658.395 657.676 1513.06 659.257 1514.95 659.377 1515.43 1519.39 657.167 658.384 1519.87 658.384 658.861 1525.09 1525.89 658.394 658.394 1526.0**2** 657.613 659.338 1526.0**2** 658.355 1533.31 658.355 657.712 1534.34 659.27 1536.81 658.987 1539.89 657.518 1539.89 658.419 1539.9 658.419 1549.31 658.037 658.292 658.292 1549.61 658.892 1555.84 658.721 1557.77 1561.24 657.766 658.03 1561.31 658.03 657.61 1568.64 657.61 657.385 1568.7**2** 1573.19 658.597 1575.25 657.043 658.007 658.007 1575.56 659.093 1583.35 658.801 1584.47 657.481 657.481 1587.04 1587.27 657.173 657.455 657.455 1596.96 657.066 1597.08 658.571 1598.51 658.581 1598.5**2** 656.783 1601.64 657.398 657.398 1601.74 658:457 1606.84 657.389 1607.48 657.389 657.079 1607.59 656.441 1610.89 657.389 657.389 1611.62 658.709 1615.15 658.557 1615.85 657.378 657.378 1616.55

18

1616.67 656.602 1618.24 657.965 1624.06 657.584 657.584 657.009 1624.06 1632.16 658.298 658.3 1635.16 656.992 1635.5 1635.76 657.291 657.291 1641.84 658.392 1641.88 656.464 657.079 657.079 1642.02 1647.46 657.012 657.012 1647.56 656.544 1654.21 658.203 1654.58 658.052 1655.75 657.06 657.06 656.466 1655.89 1665.62 657.615 1666.54 657.011 657.011 656.449 1666.84 1667.04 657.943 1672.96 656.409 657.242 1673.03 657.242 1675.76 658.033 1678.24 657.753 1680.55 657.074 657.074 656.277 1681.07 1688.57 657.046 657.046 1688.66 656.487 1694.32 657.288 1694.57 656.384 1695.0**2** 656.997 656.997 1696.49 657.98 1701.49 656.448 1701.7 656.977 656.977 657.782 1704.95 657.687 1709.02 1710.2 656.892 656.892 1710.55 656.134 1718.56 656.932 656.932 1718.68 656.014 1718.68 657.448 656.877 656.877 1722.3 656.7 1722.45 657.37 1726.89 1727.2 657.422 657.31 1727.65 1727.74 656.362 656.362 656.116 1727.82 655.969 655.969 1732.11 655.788 1732.19 1737.21 657.36 1740.84 655.85 655.85 655.511 1740.84 657.61 1741.31 1745.63 655.144 655.64 655.64 1745.81 657.298 1747.07 657.391 1752.01 1752.01 655.414

1752.24 655,71 655.71 656.974 1757.3 655.592 1759.98 655.592 655.387 1760.09 656.621 1761.01 655.296 1768.0**2** 655.296 656.872 1772.12 1773.68 654.946 655.228 655.228 1774.16 1780.06 654.751 655.449 655.449 1781.82 656.819 1782.81 657.067 1789.79 1791.22 654.525 655.437 655.437 1791.22 1800.34 654.745 655.106 656.82 656.917 655.131 655.081 1802.29 654.75

Cross Section / Bank Profile Locations

Name	Type	Profile Station
(Year 4) Cross Section (Year 4) Cross Section	on 3 - Pool (R2-3)Pool XS on 4 - Riffle (R2-3)Riffle X on 5 - Riffle (R2-3)Riffle X on 6 - Pool (R2-3)Pool XS	

Measurements from Graph

Bankfull Slope: 0.00749

Variable	Min	Avg	Max
Dmax run Dmax glide Low bank ht	0.00787 0 0 28.47 15.49 10.01 0.77 1.71 0 0 0	0.02639 0 0 47.53 24.9 18.33 1 2.13 0 0	0.09107 0 0 82.11 33.05 31.43 1.19 2.52 0 0 0
Length and dep	th measurements	in feet, slope	s in ft/ft.

RIVERMORPH PROFILE SUMMARY

Notes

River Name:(Year 4) Reedy Fork CreekReach Name:R2-3Profile Name:(Year 4) R2-3 Longitudinal ProfileSurvey Date:09/26/2011DISTNote453.64XS3 - TW Intersect @ station 453.64831.32XS4 - TW Intersect @ station 831.321311.23XS5 - TW Intersect @ station 1311.231800.34XS6 - TW Intersect @ station 1800.34

Distance along stream (ft)

River Name: (Year 4) Reedy Fork Creek Reach Name: R2-4a Profile Name: (Year 4) R2-4a Survey Date: 09/26/2011

Survey Data

DIST	СН	WS	BKF	LB	RB	LEW	REW
0 9.31	669.83 669.778	3					
9.31 10.37 19.32				670.295 670.305	670.271		
20.16 20.16 31.06	669.734	ŀ		670.217	670.363		
31.7 31.91	669.612	•		0/0.21/	670.48		
43.94 44.43 44.43	669.599)		670.071	670.379		
53.15 53.15 54.32	669.338			669.949	670.176		
66.2 67.25	669.394				669.915		
67.57 75.1 75.61	669.262			669.898 669.95		₹-	
75.61 86.76 86.76	669.056				669.695 670.348		
87.95 96.85	009.030			669.931		669.044	
97 97.18 97.96	668.812			669.664	669.563		
109.61 109.94	669.108				669.698		
110.07 123.94 124.34	668.64			669.645 669.476			
124.6 132.32 133.45				669.878	669.496 669.385		
133.45 143.35	668.554			0091070	669.267		
144.05 144.27 153.9	668.805			668.893	669.44		
154 154.42 154.54	668.083	668,381			668.96	668.381	
161.23 161.81		668.273		668.859		668.273	
161.93 162.05 172.29	668.062	4	u	668.867	668.646		

173.02 667. 173.17 182.1241 668.	09		59.051
Cross Section	/ Bank Profile		
Name		Туре	Profile Station
Measurements f	From Graph		
Bankfull Slope	e: 0.00875		
Variable	Min	Avg	Max
S glide P - P Pool length Riffle length Dmax riffle Dmax pool Dmax run Dmax glide Low bank ht	0.49 0.69 0 0 oth measurements	0 40.21 16.63 8.58 0.58 0.84 0 0 0	0 44.24 20.66 9.55 0.79 1.01 0 0 0 0 0 0
River Name: Reach Name: Profile Name: Survey Date:	(Year 4) Reedy R2-4a (Year 4) R2-4a 09/26/2011	Fork Creek	
DIST Not	e		

,

(Year 4) R2-4b Longitudinal Profile (0+00 to 1+20)

Elevation (ft)

River Name: (Year 4) Reedy Fork Creek Reach Name: R2-4b Profile Name: (Year 4) R2-4b Survey Date: 09/26/2011

Survey Data

DIST	СН	WS	BKF	LB	RB	LEW	REW
0	671.892						
2.032 3.339	671.617			672.444			
3.627 4.026		672.104			672.554	672.104	
4.875	671 000			672.378	0.2100.		
7.957 9.036	671.909				672.569		
15.084 15.315		672.188		672.293		672.188	
15.586 16.954	671.78			672.451			
24.172				072.451	672.175	_	
24.755 25.074	671.015	671.81				671.81	
27.282 33.003	671.534			672.272			
33.331	0/1.334			672.148			
33.386 33.442		671.737			672.141	671.737	
41.469 42.338				672.12	672.198		
42.788	0.24	671.856			072.190	671.856	
42.836 47.651	671.041			672.049			
48.058 48.078	671.528	671.925				671.925	
48.078	071.520	C74 C25			671.787	674 697	
52.8 53.044		671.635			672.045	671.635	
53.044 55.046	670.76			671.756			
59.276	671.609	671 665		0/11/30		634 665	
60.06 61.137		671.665			671.78	671.665	
64.12 72.64	671.173	671.386	671.71	671.713	671.646 671.506	671.386	671.291
72.783	670 020			671.847	0/1.500		
72.811 73.01	670.838	671.136				671.136	
74.426 78.118	670.561				671.205		
78.118	0/01/01	670 024		671.759		670 004	
78.392 87.916		670.924			671.167	670.924	
89.009 89.085	670.352			671.02			
89.43		670.944				670.944	
96.57 98.964	670.607			671.084			

110.753 112.543 117.54 118.32 118.384 118.384		670.685 670.443	670.783 670.748 670.505 670.4	547
Cross Sect	ion / Bank Profile			
Name		Туре	P	Profile Station
Measuremen	ross Section 1 - R ⁻ t s from Graph lope: 0.01629 Min	Avg	Мах	
S riffle S pool S run S glide P - P Pool lengt Riffle len Dmax riffl Dmax pool Dmax run Dmax glide Low bank h	0.01943 0.00000 0 21.75 h 10.06 gth 5.03 e 0.10 0.85 0 0	0.05387 0.00107 0 28.61 13.36 6.43 0.49 1.03 0 0	0.08831 0.00252 0 36.13 14.97 7.83 0.78 1.23 0 0 0	
Ť	RIVERMO	ORPH PROFILE S	SUMMARY	
		Notes		
Reach Name Profile Na Survey Dat DIST	me: (Year 4) R2-4b e: 09/26/2011		Fle (R2-4b)	

(11) Elevation

River Name: (Year 4) Reedy Fork Creek Reach Name: R2-4c Profile Name: (Year 4) R2-4c Longitudinal Profile Survey Date: 09/26/2011

Survey Data

DIST	СН	WS	BKF	LB	RB	LEW	REW
29.717 29.717 30.636 30.934 43.448	669.319 669.085	670.064		669.867	669.863	670.064	
43.448 43.455 43.455 43.929 48.155	669.049	669.863		669.534	669.962 669.848	669.863	
49.778 49.778 49.778 54.883	669.251	669.869		669.944	669.963	669.869	
55.321 55.633 55.633 61.444	669.327	669.742		669.812	669.96	669.742	
61.511 61.511 63.473 68.82 69.953	669.158	669.576 669.625		670.005 669.76		669.576 669.625	
71.484 72.606 79.048	668.614 668.837	009.025			670.443	009.025	
79.202 79.227 80.705 85.71		669.674		669.88 669.815	670.113	669.674	
87.089 87.692 87.692	668.962	669.535		003.013	669.871	669.535	
92.222 100.137 102.365	668.991	669.583 669.329		669.823		669.499 669.329	669.666
102.39 104.418 108.824	668.721			669.438	669.218		
115.518 115.518 115.57	668.953	669.192		669.215		669.192	
131.951 131.951 132.02	668.056	CC0 704		668.907	669.213		
132.02 132.02	668.004	668.701				668.701	

Cross Section / Bank Profile Locations

(Year 4) Cross	92.222					
Measurements f Bankfull Slope				2		
Variable	Min	Avg	Мах			
S pool S run S glide P - P Pool length Riffle length Dmax riffle Dmax pool Dmax run Dmax glide Low bank ht	0.76 0 0 th measurements	0.00563 0 30.06 15.85 5.92 0.71 0.94 0 0 0 in feet, slope	0.00912 0 31.11 17.77 6.31 1.19 1.19 0 0 0 s in ft/ft.			
	RIVERMO	RPH PROFILE SUM	MARY			
		Notes				
River Name: (Year 4) Reedy Fork Creek Reach Name: R2-4c Profile Name: (Year 4) R2-4c Longitudinal Profile Survey Date: 09/26/2011						
DIST Not	e					
92.222 XS2	- TW Intersect	@ station 92.2	22			

Modified Wolman Pebble Counts

(Year 4) R1 Reachwide Pebble Count

River Name: Reach Name: Sample Name: Survey Date:	(Year 4) Reedy Fork Creek R1 (Year 4) R1 Reachwide Pebble Count 09/26/2011						
Size (mm)		ITEM %					
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	59 2 5 11 11 8 0 0 1 1 0 2 1 0 0 2 1 0 0 0 0 0 0 0 0 0	58.42 1.98 4.95 10.89 7.92 0.00 0.99 0.99 0.00 1.98 0.99 0.00 1.98 0.99 0.00 0.	60.40 65.35 76.24 87.13 95.05 95.05 96.04 97.03 97.03 97.03 99.01 100.00				
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.02 0.04 0.05 0.86 1.99 32 58.42 36.63 4.95 0 0						

Se

Total Particles = 101.

Reach Name:	(Year 4) R2-3 Reachwide Pebble Count						
Size (mm)	тот #	ITEM %	CUM %				
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	3 0 7 9	3.19 0.00 7.45 9.57 8.51 17.02 4.26 10.64 7.45 13.83 10.64 7.45 0.00	3.19 3.19 10.64 20.21 28.72 45.74 50.00 60.64 68.09 81.91 92.55 100.00				
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.39 1.37 4 12.22 18.17 22.6 3.19 42.55 54.26 0 0						

Total Particles = 94.

(Year 4) R2-4a Reachwide Pebble Count

Reach Name:		Fork Creek			
Sample Name: Survey Date:	(Year 4) R2-4a 09/26/2011	Reachwide	Pebble Count		
Size (mm)	тот #	ITEM %	CUM %		
0 - 0.062	42 28 0 3 1 6 3 5 1 5 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	42.00 28.00 0.00 3.00 1.00 6.00 3.00	$\begin{array}{c} 42.00\\ 70.00\\ 70.00\\ 73.00\\ 74.00\\ 80.00\\ 83.00\\ 83.00\\ 83.00\\ 89.00\\ 94.00\\ 99.00\\ 100$		
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.02 0.05 0.08 4.34 12.24 22.6 42 38 20 0 0		τ.		

Total Particles = 100.

(Year 4)R2-4b Reachwide Pebble Count

RIVERMORPH PARTICLE SUMMARY

_____ River Name:(Year 4) Reedy Fork CreekReach Name:R2-4bSample Name:(Year 4) R2-4b Reachwide Pebble CountSurvey Date:09/26/2011 Size (mm) TOT # ITEM % CUM % LIEM % CUM % 10.20 10.20 36.73 46.94 8.16 55.10 7.14 62.24 2.04 64.29 13.27 77.55 7.14 84.69 6.12 90.82 3.06 93.88 4.08 97.96 1.02 98.98 1.02 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 10 36 0 - 0.0620.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.08 7 2 1.0 - 2.0 2.0 - 4.0 13 7 4.0 - 5.75.7 - 8.08.0 - 11.36 3 4 11.3 - 16.01 1 16.0 - 22.622.6 - 32.00 32 - 45 45 - 64 64 - 900 0 0 90 - 128 0 128 - 180 180 - 256 256 - 362 362 - 5120 0 0 0 512 - 1024 0 1024 - 2048 0 Bedrock 0 D16 (mm) D35 (mm) 0.07 0.1 D50 (mm) 0.17 D84 (mm) D95 (mm) D100 (mm) 3.81 8.91 22.6 Silt/Clay (%) 10.2 Sand (%) Gravel (%) 67.35 22.45 Cobble (%) Boulder (%) 0 0

Total Particles = 98.

0

Bedrock (%)

RIVERMORPH PARTICLE SUMMARY

Reach Name:	(Year 4) Reedy Fork Creek R2-4c (Year 4) Reachwide R2-4c 12/06/2011						
Size (mm)	тот #	ITEM %	CUM %				
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	$ \begin{array}{c} 100\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	$ \begin{array}{c} 100.00\\ 0.$	$\begin{array}{c} 100.00\\$				
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.01 0.02 0.03 0.05 0.06 100 0 0 0 0 0 0						

Total Particles = 100.

Bank Erosion Hazard Index BEHI and Sediment Transport Data was not collected during year 4 monitoring. This sampling method is only required in Year 3 and 5.

CREST CAGE

Project Name: County, State:

Tributary to Reedy Fork Creek Guilford County, North Carolina

Installation Date:

4/8/2008

		×				-							
Year of Sampling		Total Exceedance by Gauge		m	~	m	0	0	0	0	0	0	0
	2012		Year 5	0	0	0	0	0	0	0	0	0	0
	2011	c	Year 4	0	0	0	0	0	0	0	0	0	0
	2010	Gauge washed away in 1st year	Year 3	F	0	Ł	0	0	0	0	0	0	0
	2009		Year 2	1	0	1	0	0	0	0	0	0	0
	2008		Year 1	t	-	1	0	0	0	0	0	0	0
	2008		Year 0	0	0	0	0	0	0	0	0	0	0
	ormati	Zero	Elevation (ft)	653.24	629.42	633.62							
		Bankfull	Elevation (ft)	653.48	629.42	633.70							
	Cres		Gauge ID	4	2	n	~7	22	9	4	185	6	10